

LIMITED PHASE II ENVIRONMENTAL SITE ASSESSMENT

Former Chip's Service Station

4360 Acme Road Frankfort, NY 13357

Prepared For:

Mr. John Piseck, Jr. Executive Director Herkimer County Industrial Developmental Agency 420 East German Street, Suite 101A Herkimer, NY 13350

Prepared By:

HRP Associates, Inc. 1 Fairchild Square, Suite 110 Clifton Park, NY 12065

HRP #: HER1504.P2

Issued On:

August 11, 2022

TABLE OF CONTENTS

1.0	INT	RODUCTION	1
	1.1	Site History	1
2.0	FIEL	.D ACTIVITIES	3
	2.1 2.2	Safety Plan, Utility Markout, Ground Penetrating Radar (GPR) Survey	3 3
3.0	SUB	SURFACE INVESTIGATION FINDINGS	6
	3.1 3.2 3.3 3.4 3.5	GPR Survey Findings Observations Analytical Results Soil Sample Results Groundwater Analytical Results	6 7 7 8
4.0	CON	ICLUSIONS	9
5.0	REC	OMMENDATIONS	10
6.0	LIM	ITATIONS ON WORK PRODUCT	11
7.0	REF	ERENCES	13

Figures

Figure 1	Site Location Map
Figure 2	Site Plan

Tables

- Table 1
 Soil Analytical Results (Detections Only)

 Table 2
 Croundwater Analytical Results (Detections Only)
- Table 2
 Groundwater Analytical Results (Detections Only)

Attachments

- Attachment 1 GPR Survey
- Attachment 2 Site Photographic Log
- Attachment 3 Soil Boring Logs
- Attachment 4 Laboratory Analytical Results

1.0 INTRODUCTION

In June 2022, HRP Associates, Inc. (HRP) was retained to complete a Limited Phase II Environmental Site Assessment (ESA) of the subject property, located at 4360 Acme Rd, Frankfort, New York (**Figure 1**), referred to hereinafter as "the Site". The Limited Phase II ESA included the completion of a ground penetrating radar (GPR) survey, the installation of six on-site soil borings and two temporary groundwater monitoring wells, the laboratory analysis of five soil samples and two groundwater samples. The remainder of this report discusses the project background, field activities, findings/conclusions, as well as HRP's recommendations.

1.1 Site History

The approximately 0.47-acre Site consists of three contiguous parcels of land identified by the Town of Frankfort as 119.27-1-13 (Parcel A), 119.27-1-14 (Parcel B), and 119.27-1-15 (Parcel C). One single-story former gasoline station/automotive service building totaling approximately 300 square feet (ft^2) constructed circa (c.) 1935, one two-story residential building totaling approximately 800 ft^2 constructed c. 1935, and one approximately 500 ft^2 canopy currently improves the Site. The remainder of the Site includes an asphalt parking area paved in 1975, a 250 ft^2 advertising billboard, and vegetated areas. The Site was utilized for residential and commercial purposes, including petroleum and waste oil storage. It has been operated as a gasoline filling and automotive service station since development from 1971 to 2014. Site features are depicted on **Figure 2**.

In July 2022, a Phase I ESA was performed at the Site. The Phase I ESA revealed the following recognized environmental conditions (RECs) in connection with the Site:

The Site has operated as a gas station since at least 1935. The Site was identified on the Underground Storage Tank (UST) and Aboveground Storage Tank (AST) databases for an inactive petroleum bulk storage (PBS) registration (ID: 6-077895) in the New York State Department of Environmental Conservation (NYSDEC) PBS Database. Two 6,000-gallon gasoline USTs and one 8,000-gallon gasoline UST were removed in 1991. Additionally, one 2,000-gallon UST of unknown contents was closed-in place in 1991. One 10,000-gallon gasoline, one 6,000-gasoline UST, and one 4,000-gallon gasoline UST installed in 1991 are currently listed as "in service" at the Site. Additionally, one 300-gallon waste oil AST installed in 1994 is listed as "in service". No tank closure documents were identified.

During an interview, the Town Supervisor and previous Site owner, Mr. Glenn Asnoe, indicated that four unregistered gasoline USTs were reported north of the current canopy and one unregistered waste oil UST was reported inside the gasoline station/automotive service building. A GPR survey was conducted on July 13, 2022, during a Phase II ESA that was conducted concurrently with the Phase I ESA, to identify the location of current USTs and historic USTs present at the Site. The GPR survey identified three USTs in the current UST pit located to the south of the canopy and four north of the canopy. The GPR did not identify evidence of a waste oil UST on the Site. Based on the use of the Site as a gasoline station since at least 1935, lack of tank closure documents associated with the former Site USTs, and unknown status of USTs and AST currently located on-site, the current and historic use of the Site as a gasoline station is considered a REC.

• The Site has operated as an automotive service center since at least 1935. One (1) approximately 300-gallon waste oil/used oil AST installed in 1994 is reported as "in service" at the Site and is reported as located to the west of the gasoline station/automotive service building. A grease pit (i.e., oil changing pit) was reportedly utilized at the Site from approximately 1938 through the 1960s and was located southwest of the gas station/automotive service building. Evidence of a second oil changing pit was observed within the Site building during the Site reconnaissance. Information regarding the handling practices of waste oil generated associated with the historic pits was not identified.

Additionally, during the Site reconnaissance, several 55-gallon drums of unknown contents were observed to be stored in an uncovered exterior location outside of the Site buildings, one in-ground hydraulic lift was observed within the auto service area, and significant staining was observed within the auto service building. Based on the observed waste storage, significant interior staining, use of oil changing pits, and use of one (1) in-ground hydraulic lift, the historic use of the Site for automotive repair is considered a REC.

The purpose of this Limited Phase II ESA was to investigate the impacts to the on-site subsurface soils and/or groundwater by following areas of concern (AOCs) identified during the Phase I ESA:

- The current gasoline UST and former USTs located on the southeast portion of the Site.
- The former waste oil AST reportedly located to the west of the Commercial building.
- The former grease pit and drum storage area located south of the Commercial and Residential buildings.
- The former automotive service area.
- A suspected gasoline spill area on the southern portion of the Site reported by an occupant.

2.0 FIELD ACTIVITIES

2.1 Safety Plan, Utility Markout, Ground Penetrating Radar (GPR) Survey

HRP created a site-specific Health and Safety Plan (HASP) pertaining to all field activities. All contractors and HRP field personnel worked in accordance with the HASP.

Prior to implementing any intrusive activities, the drilling contractor, Core Down Drilling LLC (CDD), contacted Dig Safe NY to coordinate the mark out of utilities entering the Site from the public rightof-way (Ticket Number 07052-000-818-00). A GPR survey was performed by East Coast Geophysics Inc. (ECG) on July 13, 2022, to identify potential buried objects including buried utilities, underground floor drains, buried tanks, metal objects, and any product piping. In addition, the GPR survey was conducted to identify private utilities and other potential underground anomalies on-site which could impact soil boring locations.

ECG utilized a GSSI SIR-3000 cart-mounted GPR system as a part of the subsurface survey. GPR surveying is a nonintrusive, subsurface geophysical investigation technique that detects subsurface structures by transmitting electromagnetic waves from an antenna into the ground. The antenna then monitors the strength and time delay of the return signal. The return signal is then evaluated for any anomalies, which by their size, shape and orientation can be interpreted as voids, USTs, utility pipelines, soil-bedrock interface, or areas of different sediment compaction. ECG also utilized a RD7000+ radio frequency (RF) line locator to identify subsurface utility lines based on the presence of 120 hertz signal (electric) and transmitted signals from the RF transmitter. ECG utilized a Fisher TW-6 pipe and cable locator to locate conductive materials, such as manholes, tanks, pipes, and other metallic subsurface materials by generating an AC current which produces an electromagnetic field. Conductive features when detected by the locator emits a tone correlated to the conductivity of the feature.

A report prepared by ECG containing all findings and interpretations of the data collected in the field, the methodology, and equipment used in the subsurface survey is included in **Attachment 1**.

2.2 Limited Subsurface Investigation

The limited subsurface investigation included the installation of six soil borings, two of which were converted to temporary groundwater monitoring wells and the collection and analysis of groundwater and soil samples.

Soil Borings

To evaluate the condition of Site soils, HRP and CDD mobilized to the Site on July 13, 2022, and installed a total of six soil borings (SB-1 through SB-6). The soil borings were installed using a track mounted Geoprobe 7822 DT unit. Soil borings were advanced to 15 feet below grade (ft bg). Bedrock was not encountered in any of the six soil borings. Soil boring locations are illustrated in **Figure 2**.

Area of Concern	Soil Boring (SB) ID	Completion Depth (ft bg)	Justification
Existing UST piping	SB-1	20	Evaluate impacts to soil downgradient (northwest) of the existing gasoline UST lines.
Existing USTs	SB-2	15	Evaluate impacts to soil downgradient (north) of the existing gasoline USTs.
Suspected Gasoline Spill Area	SB-3	15	Evaluate impacts to soil in the area of the suspected gasoline spill.
Suspected Former Grease Pit Area	SB-4	15	Evaluate impacts to soil downgradient (north) of the former grease pit area.
Drum Storage Area	SB-5	15	Evaluate impacts to soil downgradient (north) of the drum storage area.
Suspected Waste Oil AST and Automotive Service Area	SB-6	15	Evaluate impacts to soil downgradient (northwest) of suspected waste oil AST west of the commercial building.

Justification of each of the six soil boring locations is summarized below:

Soil Samples

Soil samples were collected continuously in 5-ft increments using a macrocore sampler. Each soil sample was examined in the field for physical evidence of contamination (e.g., odor, staining) and subjected to a headspace analysis for the presence of gross volatile organics via a calibrated photoionization detector (PID) equipped with a 10.6 eV bulb. Geoprobe tooling and other non-dedicated sampling equipment were decontaminated between boring locations to minimize cross-contamination. Upon completion, each borehole was backfilled with native material and sand. Photographs of field activities including soil boring installations, GPR findings, and Site characteristics are included in **Attachment 2**. Soil boring logs describing the geologic conditions, PID screening results, and other observations were maintained in the field and included in **Attachment 3**.

Samples selected for laboratory analysis were based on observations, odors, staining, PID readings and depth. The following samples were submitted for laboratory analysis:

Sample ID	Sample Depth (ft bg)	Justification
SB-1	6-8	PID reading 6.0 parts per million (ppm).
SB-2	8-10	PID reading 3.6 ppm.
SB-3	12.5-13.5	PID reading 3.8 ppm.
SB-5	2-5	PID reading 3.6 ppm.
SB-6	8-10	PID reading 3.2 ppm.

A total of five soil samples were placed in appropriately labeled, laboratory provided glassware, stored on ice, and submitted under chain of custody to Pace Analytical Laboratories (Pace), an Environmental Laboratory Approval Program (ELAP) accredited laboratory. Each of the samples were analyzed for volatile organic compounds (VOCs) via EPA Method 8260C, semi volatile organic compounds (SVOCs) via EPA Method 8270D, and Total Lead via EPA Method 6010C.

Groundwater Monitoring Wells

To evaluate impacts to groundwater, HRP and CDD installed two temporary monitoring wells at the SB-1 (GW-1) and SB-6 (GW-2) locations for the collection of grab groundwater samples. The wells were installed to evaluate potential impacts to groundwater downgradient of the existing USTs and downgradient of the commercial building. The temporary monitoring wells were constructed of one-inch diameter schedule 40 PVC with 10 feet of 10-slot screen. The temporary wells were installed to a completion depth of 15-20 ft bg. Groundwater well locations are illustrated in **Figure 2**.

Groundwater Samples

Groundwater samples selected for laboratory analysis were based on observations, odors, staining, PID readings and depth of the soil samples collected. Justification of the two groundwater well locations is summarized below:

Area of Concern	Groundwater Well ID	Screened Interval (ft bg)	Justification
Existing USTs	GW- 1	15-20	Evaluate impacts to groundwater downgradient (northwest) of the existing gasoline USTs.
Suspected Waste Oil AST and Automotive Service Area	GW- 2	10-15	Evaluate impacts to groundwater downgradient (northwest) of the commercial building.

One groundwater sample was collected from each temporary well as a grab sample (i.e., little to no water was purged prior to sample collection), using a peristaltic pump and dedicated polyethylene tubing. The sample was transferred using appropriately labeled laboratory-supplied containers, stored on ice, and submitted under chain of custody to Pace for analysis of VOCs via EPA Method 8260C, SVOCs via EPA Method 8270D, and Total Lead via EPA Method 6010C.

3.0 SUBSURFACE INVESTIGATION FINDINGS

3.1 GPR Survey Findings

A GPR survey was conducted at the Site. GPR penetration depth was limited to four (4) to six (6) ft bg. Parabolic anomalies consistent with underground utilities and drainage piping and USTs and associated piping were found on-site. A report provided by the GPR contactor is included as **Attachment 1**. GPR survey findings are as follows:

- Four 5 x 10 feet metallic anomalies (#1 through #4) displaying cylindrical-shaped features consistent with potential USTs were located north of the existing canopy.
- An approximately 5 x 5 feet metallic anomaly (#5) displaying a square, flat feature consistent with a potential septic structure was located south of the residential building.
- Two gasoline USTs and associated piping were located on the southeast portion of the Site.
- Underground utilities including water, natural gas, sanitary sewer, product piping, and unknown lines were located on the northern and eastern portion of the Site.

3.2 Observations

Soil Sampling Observations

During the subsurface investigation, HRP observed overburden soils to consist mainly of gravel, silt, sand, clay, and some rock fragment. Bedrock was not observed in any of the seven soil borings.

None of the soil samples collected exhibited discoloration, staining, or odors. Each of the soil borings were screened continuously using a calibrated PID. During soil screening, PID readings were observed at a maximum concentration of 6.0 ppm at soil boring location SB-1. Soil sampling observations are included on the soil boring logs provided in **Attachment 3**.

Groundwater

Groundwater was observed at depths ranging from 12 ft bg to 13 ft bg in each of the six borings. Depth to groundwater in the temporary monitoring wells was observed at 13.39 ft bg (GW-1) and 12.6 ft bg (GW-2). Although a groundwater flow study was not conducted, based on Site topography, groundwater is expected to flow towards the north in the direction of the Mohawk River. Groundwater purged from the temporary monitoring well was turbid and exhibited no oil sheen or petroleum odor.

3.3 Analytical Results

Standards, Criteria, and Guidance Values

Soil samples collected were analyzed for VOCs via EPA Method 8260C, SVOCs via EPA Method 8270D, and Total Lead via EPA Method 6010C. HRP compared the soil results to the following NYSDEC standards, criteria, and guidance values (SCGs):

 Subpart 375-6: Remedial Program Soil Cleanup Objectives, Technical Support Document (TSD). "Technical Support Document" is also known as the "New York State Brownfield Cleanup Program Development of Soil Cleanup Objectives Technical Support Document" dated September 2006. This document presents the assumptions, rationale, algorithms, and calculations utilized by the Department and the New York State Department of Health to develop the soil cleanup objectives in ECL 27-1415(6). It should be noted that Part 375 Soil Cleanup Objectives (SCOs) are applicable to the sites in NYS Brownfields Cleanup program, Inactive Hazardous Waste Disposal Sites, or Environmental Restoration Program. Although the SCOs are not directly applicable to this Site, HRP uses a comparison against the SCOs as a screening tool. Specifically, HRP compared soil sample results against Part 375 Protection of Public Health Unrestricted Use (Unrestricted SCO) and Commercial Use (CU SCO).

Groundwater samples collected were analyzed for TCL VOCs via EPA Methods 8260 and STARS SVOCs via EPA Method 8270. HRP compared the groundwater results to the following NYSDEC SCGs:

 NYSDEC Division of Water Technical and Operational Guidance Series (TOGS 1.1.1); Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations dated October 1993; Revised June 1998; ERRATA Sheet dated January 1999; and Addendum dated April 2000. Specifically, HRP compared groundwater sample results against NYSDEC Class GA Criteria.

3.4 Soil Sample Results

A total of five soil samples were submitted under chain of custody to Pace for analysis. The analytical results for soil samples are summarized below. The laboratory analytical report is included as **Attachment 4**.

VOCs were not detected at concentrations exceeding laboratory reporting limits in any of the five samples analyzed.

SVOCs were not detected at concentrations exceeding laboratory reporting limits in four of the five samples analyzed. In sample SB-2, SVOCs were detected at concentrations exceeding laboratory detection limits, but well below applicable SCOs.

Lead was detected at concentrations exceeding laboratory reporting limits, but well below applicable SCOs in all five samples analyzed.

3.5 Groundwater Analytical Results

Two groundwater samples were submitted under chain of custody to Pace for analysis. The analytical results for groundwater samples exceeding laboratory reporting limits and Part 375 SCOs are summarized below. The laboratory analytical report is included as **Attachment 4**.

VOCs were detected at concentrations exceeding laboratory reporting limits in groundwater samples GW-1 and GW-2; however, no VOCs were detected at concentrations exceeding NYSDEC Class GA Criteria.

SVOCs were not detected at concentrations exceeding laboratory reporting limits or NYSDEC Class GA Criteria in either of the two groundwater samples.

4.0 <u>CONCLUSIONS</u>

Based on the data collected to date, HRP offers the following conclusions:

- Low to trace concentrations of contaminants of concern were detected in soil samples collected form the Site. Contaminants of concern were not detected at concentrations exceeding applicable 6 NYCRR Part 375 Soil Cleanup Objectives, Unrestricted Use (Unrestricted SCO) and Commercial Use (CU SCO). Based on the data collected to date, soil remediation is unlikely to be necessary at the Site.
- Low to trace concentrations of contaminants of concern were detected in groundwater samples collected form the Site. Contaminants of concern were not detected at concentrations exceeding NYSDEC Class GA Criteria. Based on the data collected to date, groundwater remediation is unlikely to be necessary at the Site.

5.0 **RECOMMENDATIONS**

Based on the data collected to date, HRP recommends the following:

HRP recommends the USTs, as well as associated piping be excavated and removed. UST removal should be completed in accordance with regulations for NYSDEC's PBS program contained in 6 NYCRR Part 613 NYSDEC must be notified at least 30 days before UST excavation and removal. Each UST must be registered and closed in the NYSDEC PBS program prior to removal. Based on the data collected to date, it is unlikely that a petroleum release has occurred at the Site. However, if petroleum impacted soils are encountered during UST removal, NYSDEC should be notified through the Spill Hotline and impacted soils should be excavated and properly disposed of off-site as non-hazardous waste. Following completion of UST removal and remedial excavation, a UST closure report should be submitted to NYSDEC.

6.0 LIMITATIONS ON WORK PRODUCT

All work product and reports provided by HRP in connection with the performance of any phase of Environmental Site Assessments, and any services related to remedial and post-remedial action, including all work performed under HRP's Terms & Conditions and any follow-up work is subject to the following limitations.

- 1. The observations described in the Project Report(s) are made under the stated conditions. The conclusions presented in the Report(s) are based solely upon the indicated services, and not on scientific tasks or procedures beyond the scope of described services or the time and budgetary constraints imposed by the Client.
- 2. In preparing Project Reports, HRP relies on certain representations made and information provided by federal, state, and local officials, the Client and other parties referenced in the Project Reports, and on information contained in the files of federal, state and/or local agencies made available to HRP, at the time of the Project. To the extent that such information and files are missing, incomplete or not provided to HRP, HRP is not responsible. Although there may be some degree of overlap in the information provided by these various sources, HRP does not attempt to independently verify the accuracy or completeness of all information provided or received during the course of the Project. If the Client determines that information provided or made available to HRP from any source is incorrect or inaccurate, the Client should promptly notify HRP, whereupon HRP will issue a corrected Project Report.
- 3. Observations are made of the site and of structures on the site as indicated within the Project Report(s). Where access to portions of the site or to structures on the site is unavailable or limited, HRP renders no opinion as to the presence of potential contamination by hazardous substances, wastes or petroleum and chemical products and wastes. In addition, HRP renders no opinion as to the presence of indirect evidence relating to potential contamination by hazardous substances, wastes or petroleum and chemical products or wastes where direct observation of the interior walls, floors, or ceilings of a structure on a site is obstructed by objects or coverings on or over these surfaces.
- 4. Unless otherwise specified in the Project Report(s), HRP does not perform testing or analyses to determine the presence or concentration of asbestos or polychlorinated biphenyls (PCBs), lead paint, urea formaldehyde foam insulation (UFFI), wetlands, regulatory compliance, cultural and historical risks, industrial hygiene, health & safety, ecological resources, endangered species, indoor air quality, high voltage power lines, or radon at the site or in the environment of the site.
- 5. The purpose of the Project Report(s) is to assess the physical characteristics of the subject site with respect to the potential presence in the site soil, ground water or surface water environment of contamination by hazardous substances, hazardous waste or petroleum and chemical products and wastes. HRP has not confirmed the compliance of present or past owners or operators of the site with federal, state, or local laws and regulations, environmental or otherwise.

- 6. If sampling is included in the scope of the Project, the conclusions and recommendations contained in the Project Report(s) are based in part upon the data obtained from a limited number of soil, ground water, or surface water samples obtained from widely spaced surface or subsurface explorations. The nature and extent of variations between these locations may not become evident until further exploration. If variations or other latent conditions then appear evident, it will be necessary to re-evaluate the conclusions and recommendations of the Project Report(s).
- 7. If water level readings are made in test pits, borings, and/or observation wells; these observations are made at the times and under the conditions stated on the test pit or boring logs or in the Project Report(s). However, it must be noted that fluctuations in the level of ground water may occur due to variations in rainfall, passage of time and other factors. Should additional data become available in the future, these data may alter the basis of conclusions and recommendations presented in the Project Report(s).
- 8. If the conclusions and recommendations contained in the Project Report(s) are based, in part, upon various types of chemical analyses, then the conclusions and recommendations are contingent upon the validity of such data. The analyses are performed for specific parameters and additional chemical constituents not searched for during the current study may be present in soil, ground water, or surface water at the site. Where such analyses have been conducted by an outside laboratory, HRP has relied upon the data provided, and has not conducted an independent evaluation of the reliability of these tests. The data (if obtained) are reviewed, and interpretations made in the Project Report(s). If indicated within the Project Report(s), some of these data may be preliminary "screening" level data and should be confirmed with quantitative analyses if more specific information is necessary. Moreover, it should be noted that variations in the types and concentrations of contaminants and variations in their flow paths may occur due to seasonal water table fluctuations, past disposal practices, the passage of time, and other factors. Should additional chemical data become available in the future, these data may alter the basis of the conclusions and recommendations presented in the Project Report(s).
- 9. It is recommended that HRP be retained to provide further hydrogeologic and engineering services during the conduct of further exploration or the construction and/or implementation of any remedial measures recommended in HRP's Project Report(s). This is to allow HRP and the Client to observe consistency with the concepts and recommendations contained therein, and to allow the development of changes to the remedial program in the event that subsurface conditions or other conditions differ from those anticipated.
- 10. The services provided by HRP do not include legal advice. Legal counsel should be consulted regarding interpretation of relevant federal, state, and local laws

7.0 <u>REFERENCES</u>

Published Sources

• 6 NYCRR Part 375, Environmental Remediation Programs, Subparts 375-1 to 375-4 & 375-6 Effective December 14, 2006. Division of Environmental Remediation, New York State Department of Environmental Conservation.

Limited Phase II ESA 616 Columbia Street Extension Cohoes, NY

FIGURES

hrp-ny-fs1\shared\Data\H\HERCO - HERKIMER COUNTY IDA\ACME ROAD, FRANKFORT, NY\HER1505P2 - Phase II Acme Rd.Frankfort, NY\WP\Chip's Service Station P II Draft.docx

			Nor	th	
0		15	(30 Fee	et
Revisions	No. Date				
Designed By:	CG	Drawn By:	BOB	Reviewed By:	
Issue Date:	01/20/2022	Project No:	HER1504.P1	Sheet Size:	11×17
	Site Plan		4360 Acme Road	Erankfort Naw York	
	Fig	gure	• No 2		

197 SCOTT SWAMP ROAD FARMINGTON, CT 06032 (860) 674-9570 HRPASSOCIATES.COM

			Nor	th	
0		10		20 Fee	et
Revisions	No. Date				
Designed By:	CG	Drawn By:	BOB	Reviewed By:	MIM
Issue Date:	01122/2022	Project No:	HER1505.P2	Sheet Size:	11X11
	Sample Locations		4360 Acme Road	Frankfort, New York	
	Fi	gure	3 3	•	

Α

oil Analytical Results

Table 1 Soil Laboratory Analytical Results (Detections Only) 4360 Acme Road, Frankfort, NY 13461

ID:		NY-375-6	NY-375-6	SB-1	SB-2	SB-3	SB-5	SB-6
Date Collected	Unit	Commercial	Unrestricted	7/13/2022	7/13/2022	7/13/2022	7/13/2022	7/13/2022
Lab Report No:		Use SCOs	Use SCOs	70222268	70222268	70222268	70222268	70222268
				VOCs				
				None detected				
				SVOCs				
Benzo(a)anthracene	ug/kg	5600	1000	< 73.8	75.6	< 79.3	< 339	< 73.7
Benzo(a)pyrene	ug/kg	1000	1000	< 73.8	83.6	< 79.3	< 339	< 73.7
Benzo(b)fluoranthene	ug/kg	5600	1000	< 73.8	104	< 79.3	< 339	< 73.7
Benzo(ghi)perylene	ug/kg	500000	100000	< 73.8	47.3	< 79.3	< 339	< 73.7
Benzo(k)fluoranthene	ug/kg	56000	800	< 73.8	50.4	< 79.3	< 339	< 73.7
Chrysene	ug/kg	56000	1000	< 73.8	88	< 79.3	< 339	< 73.7
Dibenzo(a,H)anthracene	ug/kg	560	330	< 73.8	< 73.1	< 79.3	< 339	< 73.7
Fluoranthene	ug/kg	500000	100000	< 73.8	150	< 79.3	< 339	< 73.7
Fluorene	ug/kg	500000	30000	< 73.8	< 73.1	< 79.3	< 339	< 73.7
Indeno(1,2,3-cd)pyrene	ug/kg	5600	500	< 73.8	50	< 79.3	< 339	< 73.7
Naphthalene	ug/kg	500000	12000	< 73.8	< 73.1	< 79.3	< 339	< 73.7
Phenanthrene	ug/kg	500000	100000	< 73.8	64.5	< 79.3	< 339	< 73.7
Pyrene	ug/kg	500000	100000	< 73.8	118	< 79.3	< 339	< 73.7
				Metals				
Lead	mg/kg	1000	63	8.9	18.3	7.1	17.2	14

<1= Parameter not detected above the laboratory reporting limit.

1= Parameter reported above the laboratory reporting limit but below the applicable regulatory standard/criterion.

mg/kg= milligrams per kilogram

ug/kg= micrograms per kilogram

SCO= Soil cleanup objective

VOC= Volatile organic compound

SVOC= Semi-volatile organic compound

A Groundwater Analytical Results

Table 2Groundwater Laboratory Analytical Results (Detections Only)4360 Acme Road, Frankfort, NY 13461

ID:			GW-1	GW-2
Lab Report NO:	Unit	Class GA	70222268	70222268
Date Collected:	Unit	Criteria	7/13/2022	7/13/2022
	VOO	Cs		
Acetone	ug/l	50	4.7	2.7
Bromodichloromethane	ug/l	50	< 1.0	1.9
Bromoform	ug/l	50	< 1.0	1.2
Carbon disulfide	ug/l	60	1	< 1.0
Chloroform	ug/l	7	< 1.0	2.5
Dibromochloromethane	ug/l	50	< 1.0	2.1
	SVO	Cs		
	None de	tected		
	Meta	als		
	None de	tected		

<1= Parameter not detected above the laboratory reporting limit.

1= Parameter reported above the laboratory reporting limit but below the applicable regulatory standard/criterion.

mg/kg= milligrams per kilogram

ug/kg= micrograms per kilogram

SCO= Soil cleanup objective

VOC= Volatile organic compound

SVOC= Semi-volatile organic compound

ATTACHMENT 1 GPR Survey

501 Cambria Avenue, Suite 281, Bensalem, PA 19020 215-366-7389 eastcoastgeophysics.com

Date: 07-14-2022

Site Location: 4360 Acme Road, Frankfort, New York

<u>Attention:</u> HRP Associates, Inc. 1 Fairchild Square, Suite 110, Clifton Park, New York 12065

Regards:

Alex Craig East Coast Geophysics Inc. 501 Cambria Avenue Suite 281, Bensalem, Pennsylvania, 19020

1. BACKGROUND AND PROJECT OBJECTIVES

4360 Acme Road is an unoccupied service station with garage used for auto repair. Surface conditions throughout the survey area are typically asphalt, concrete, reinforced concrete, gravel, and grass. Site project objectives are:

- Scran the survey property for potential underground storage tanks (USTs), former excavations, septic structures and/or other anomalous features.
- Locate all detectable underground utilities adjacent to the client proposed soil borings.

2. EQUIPMENT

This project used the following equipment to perform the geophysical survey on the property.

• GSSI SIR-3000 Cart Mounted Ground Penetrating Radar System

Ground Penetrating Radar is a non-invasive geophysical method in which electromagnetic pulses probe the subsurface, allowing targets to be imaged in real time. The EM pulses that are transmitted into the subsurface are reflected from various interfaces within the ground, including soil horizons, ground water, and manmade features such as underground storage tanks and utilities. The GPR antenna consists of a transmitter, which is used to create the EM pulse, and a receiver which collects returning signals. The high frequency waves created by the antenna can be generated in a range of 10 MHz to 2.6 GHz. The frequency of the antenna will vary the depth of penetrations, signal clarity, and attenuation into the subsurface. The antenna used for general field work by ECG is 400 MHz; this frequency range has the capability to transmit to a depth of up to 10 feet below ground surface. Surface and subsurface conditions can greatly reduce the effective depth of the signal penetration; these conditions include conductive soils, slag/fill material and standing water.

• Radiodetection RD7000+

RD7000 is an advanced high-range precision utility detector capable of detecting utilities up to 15 feet below ground surface. The RD7000+ has the capability of locating a variety of pipes and cables using either passive or active modes. **Passive** signals can be traced with only the transmitter using "natural" signals present in many conductors. These signals can be generated from an array of sources including power cables, power system return currents, and long wave radio frequencies. **Active** signals are known AC frequencies induced onto a target pipe or cable. User induced signals can help positively identify lines throughout areas of congested utilities.

• Fisher TW-6 Pipe and Cable Locator

The Fisher TW-6 Pipe and cable locator uses electromagnetic induction to locate conductive materials, such as manholes, tanks, pipes, cables, and other metallic materials in the subsurface. The transmitter generates an AC current which produces an electromagnetic field similar to a dipole magnet. When the transmitter passes over a conductive feature, the generated electromagnetic field becomes distorted as a result of the interference with the natural electromagnetic field created by the conductive feature. The distortion of the generated field is detected by the receiver which emits a tone that is correlated to the conductivity of the feature.

East Coast Geophysics Inc 501 Cambria Avenue Suite 281, Bensalem, PA 19020 215-366-7389

3. PROCEDURE

ECG personnel began with a utility survey utilizing active detection with the RD-7000+. This is done by directing hooking up to known surface features across the site such as lamp posts, electric / communication boxes, and valves. The surveyor then performed a passive scan with the RD-7000+ receiver to detect any energized utilities that may have not been located with the active scan. Any detected utilities were then marked in the field.

ECG personnel then walked across the survey area with the TW-6 in 3-5 foot spacing increments. The approximate size and shape of any conductive targets detected was then marked in white and will be further investigated with GPR.

GPR was then utilized to confirm the approximate depth of any utilities detected with the RD-7000+ and the size, shape, and depth of any anomalies located with the TW-6. ECG personnel then scanned the remaining portions of the property in 3-5 foot spacing increments for any other anomalous features or utilities not detected with the RD-7000+ or TW-6.

4. **RESULTS**

- Underground Utilities All utilities were marked in APWA designated colors.
 - \circ Water (Blue) 4-5' bgs
 - Natural Gas (Yellow) 3-4' bgs
 - Sanitary Sewer (Green) 1-6' bgs
 - \circ Unknown (Pink) 2-4' bgs
 - \circ Product Piping (Pink) 1-3' bgs
- Metallic Anomaly #1, #2, #3 and #4 ECG utilized the TW-6 to detect four metallic anomalies within the eastern portion of the property (north of the pump island). GPR transects over this area display cylindrical shaped features, consistent with potential USTs. Each feature measured approximately 5 by 10 feet.
- Metallic Anomaly #5 ECG utilized the TW-6 to detect a metallic anomaly within the western side of the on-site building. GPR transects over this feature displayed a square, flat feature, consistent with a potential septic struct. The approximate size of this feature is 5 by 5 feet.
- **Current Fuel USTs** ECG utilized the GPR to detect two cylindrical shaped features within the reinforced concrete pad. ECG was informed that these are the current fuel USTs. The approximate size of each feature is 27 by 9 feet.

Site map (073022) is attached portraying all detected subsurface features.

East Coast Geophysics Inc 501 Cambria Avenue Suite 281, Bensalem, PA 19020 215-366-7389

5. SITE LIMITATIONS

- Ground Penetrating Radar GPR depth of penetration was limited to 1-3 feet bgs. The limiting factor was signal attenuation from near surface soils.
- TW-6 The TW-6 was unable to be utilized within close proximity to exterior building walls, park vehicles, reinforced concrete and/or other large metallic features.

6. DISCLAIMER

The limitations of a geophysical survey from both the site and equipment are important to consider when performing intrusive work at a survey site. The equipment is unable to maintain a constant depth of penetration or a constant level of effectiveness over the course of a survey due to subsurface and environmental conditions. The results provided both in this report and in the field should be used in conjunction with other methods including but not limited to, site plans, asbuilts, sanborn maps, field observations, public-mark out services, soft-digging, pre-clearing, and historical documentation of the site. No survey or survey method can accurately show an exact image of all subsurface conditions. The presence of non-detectable subsurface utilities and structures is always a risk at any site. Please take caution when proceeding with invasive work.

East Coast Geophysics Inc 501 Cambria Avenue Suite 281, Bensalem, PA 19020 215-366-7389

LEG	END
Y POLE CT LINE RY SEWE WN	R v v c c P P u u
1	6 32

EAST C	AST
SITE 4360 ACME FRANKFO NEW YO	ROAD DRT RK
CLIENT	
DRAWING NO. 073022	2
PROJECT NO. SHEET NO. 1 OF 1	
SCALE 1:16 DATE 07/30/2022	
drawn AMC	
NOTES: East Coast Geophysics, Inc. liable for damages of any k the use of this information georeferenced based on sa and are not considered to These drawings are intend reference only.	shall not be ind arising out of . Drawings are itellite imagery be survey quality. ed to be used as

ATTACHMENT 2 Site Photographic Log

View of suspected lead paint peeling from the rear of the Residential building facing south.

View of UST lines to canopy identified during GPR activities facing north.

View of garage door of the Commercial building facing south.

View of four USTs, gas and sewer lines identified during GPR activities facing west.

View of boat on west side of Commercial building blocking GPR access to suspected waste oil UST. View facing northeast.

View of parabolic anomaly at the rear of the Residential building identified during GPR facing northwest.

View of existing dispenser canopy located east of the Commercial building.

Approximate location of SB-6/GW-2 facing south.

View of geoprobe activities facing west.

View of inside the Commercial building garage.

View of geoprobe activities facing northwest.

ATTACHMENT 3 Soil Boring Logs

Drilling Drilling Samplin	Company			Date: 1.15.CC	
Drilling Samplin	wwinpany	: Core Down	Drilling	Time: 1000	
Samplin	Equipme	nt: Geoprobe	782201	Drilling Method: Direct push/dual tu	ıbe
t str	g Method	Direct PI	ish macrocon	Observer: JG	16
Location	n: 12 +	eet west o	+ TANK pd	W Northwast Corner 11 Ter S	ooth at C
Sample	Interval	Recovery	Moisture	Description	PID
Top	Bottom	(ft)	Moisture	staining, odor)	(PPM
0	S	25	DM	0-05 CHAYRGIG and De 400	10.0
0	0	24 3	0.	OF-D. SUT Long VOLIDI	49
				0.5 ROAN EDOCALLET DEL	120
	-			Kan	10.3
~		15	Ded. Leel	prown purple, no obbi, or	
5	0	d.5	UN-WET	5-7. SILT, some rock tragence	10.0
			1	Ornen, UM, MOUL	
		1~	11.4.1	1-10: Same as J-1, wet at 14	133
0	5	96	het-sat	10-11, RUCK FRAG, trace silt	13.
_			120	bown, wet, op aler	
-		Sec. 1		11-15 SAND (medium), 11412	3.0
202			- #-	Chay, trace grand, saturated	
		11	N	at 13 ft, no for	
			ł	11	
		20	in the		
			33		
	() () () () () () () () () ()	1	•		
		1			
		- 14 H			
					-
					-
					-
Soil Com	nla Calla	cted:	Time	Groundwater Sample Collected	Time
SOIL SAIL	iple colle	cieu.	10.2.0	Stoundwater Sample Conected	147
		/	000	GW-1	110

Project	: Bailey's	Automotive		Boring I.D.: SB-2		
Job Nu	mber: HE	R1505.P2		Date: 7/13/22	Date: 71322	
Drilling	Company	: Core Down	Drilling	Time: 1045		
Drilling	Equipmen	nt: Geoprobe		Drilling Method Direct push dual tube		
Sampli	ng Method	dreetaid	NOTOGE	Observer: JG		
Locatio	n:16Ff	-3 SR-1	, GFT E	58-1		
Sample Interval				Description		
(ft	bg)	(ft)	Moisture	(grain size, color, compaction,	(PPI	
Тор	Bottom	105		staining, odor)	11.	
0	5	1.SPT	dn	No stain, other	19.1	
3	10	3.5	dry	5-7 SIH, brown, no	4.4	
			dry	7-8 fsand, brown,	yag.	
			moist	(+ brown purple, some	1,0	
10	-15	4.5	monstwe	FOHL SIFT DOWN	3.9	
			MOIST	11-12 f sand brigg		
			wett	nustain Jodi' gry,	4.	
15 -	- 20		*			
1.	-				-	
					_	
V			/			
Soil Sample Collected: Time				Groundwater Sample Collected	Time	

Job Number: HER Drilling Company: Drilling Equipmen Sampling Method: Location: In Sample Interval (ft bg) Top Bottom 0 5 (P 10 10 5 10 5 10 5 10 11 12 13 14 15 15 16 17 18 19 10 10 11 12 13<	1505.P2 Core Down It: Geoprobe Recovery (ft) 4	Moisture Dry Ony-oneut With Moisture	Date: 7.13.22 Time: 100 Drilling Method: Direct push/dual tuk Observer: JG Description (grain size, color, compaction, 	PID (PPM) 2.9 3.0
Drilling Company: Drilling Equipmen Sampling Method: Location: Image: Company: Sample Interval (ft bg) Top Bottom 0 S 0 S 10 IS 11 IS 12 IS 13 IS 14 IS 15 IS	Core Down t: Geoprobe Recovery (ft) . Ч	Moisture Dry Dry Dry OM-DMAA Waith	Time: 100 Drilling Method: Direct push/dual tuk Observer: JG Description (grain size, color, compaction, staining, odor) O Soll and organic Sum asphalt, black of glight J-S: SILT, Som for tragment, no oder brown or S-9: SiLT and reacting our ple down and simily purple color 9-10: Sum a S-1 bet ion sed main	PID (PPM) 2.9 3.0
Sampling Equipmen Sampling Method: Location: Image: Constraint of the system Sample Interval (ft bg) Image: Constraint of the system Top Bottom O S Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of	t: Geoprobe Recovery (ft) 4 4	Moisture Dry Dry On-moust with with	Drilling Method: Direct push/dual tub Observer: JG Description (grain size, color, compaction, 	PID (PPM) 2.9 3.0
Sampling Method: Location: In terval (ft bg) Top Bottom 0 S 10 S 1	Recovery (ft) . H 4	Moisture Dry Dry Ory-onoust waith	Observer: JG Description (grain size, color, compaction, 	PID (PPM) 2.9 3.0
Location: In the Sample Interval (ft bg) Top Bottom 0 5 10 5 10 10 15 10 10 15 10 15 10 15 10 10 15 10 10 15 10 10 15 10 10 10 10 10 10 10 10 10 10 10 10 10	Recovery (ft) . Ч 4 4	Moisture Dry Dry Ory-DMULT	Description (grain size, color, compaction, staining, odor) To PSOIL and marid Some asphalt, black on slight 2-5: SILT, Some fork tragment, no odor brown an 5-9: SILT and race fragment, brown as der simtly purple color 9-10: Som as 5-0 best som sond main	РІД (РРМ) д.9 3.0
Sample Interval (ft bg) Top Bottom 0 5 0 5 0 5 1 1 0 5 1 1	Recovery (ft) . Ҷ Ҷ	Moisture Dry Dry Ory-oneust waith waith	Description (grain size, color, compaction, 	PID (PPM) 2.9 3.0
Top Bottom 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 10 \$ <td>. भ - - - - - - - - - - - - - - - - - - -</td> <td>Dry Dry-oneust Dry-oneust Imaist Imaist Imaist</td> <td>0 Serve asphalt, black Dry Blight D-5: SILT, Some Park Tragment, no odor, brown, dry 5-9: SILT public tragment, brown, nooder standy purple color 9-10: Som as 5-9 beet some soul</td> <td>2.9 3.0</td>	. भ - - - - - - - - - - - - - - - - - - -	Dry Dry-oneust Dry-oneust Imaist Imaist Imaist	0 Serve asphalt, black Dry Blight D-5: SILT, Some Park Tragment, no odor, brown, dry 5-9: SILT public tragment, brown, nooder standy purple color 9-10: Som as 5-9 beet some soul	2.9 3.0
0 5 10 15 10 15 1 10 10 15 10 15	4	Dry- University Dry- University Invalid Invalid Invalid Invalid Invalid	Some asphalt, black Dry slight 2-5: SILT, Some rock tragment, no odor, brown, dry 5-9: SILT pund rock fragment, brown, needer slawly purple color 9-10: Som as 5-9 best some soul	2.9 3.0
5 (p 10 15 1 15	4	CLUMO MO With Minery Mark Wet	Some asphalt, black, Dry, Blight 2-5: SILT, Some rock tragment, no odor, brown, dry 5-9: SILT pus rock fragment, brown, nooder, stantly purple color 9-10: Som as 5-9, best some soul	2.9 3.0
	4 4 4	CLAUMO MO HANN MANN MANN	01-5: SILT, Some nock tragment, no odor, brown, dry 5-9: Silt pure rock fragment, brown, nooder standy purple celer 9-10: Som as 5-9, best some soul	8.9 3.0
	4	Chance MC	5-9: Silt pund rock fragment, brown, needer signify purple color 9-10: Sam as 5-9 bet some soul	3.0
5 10 10 15 4 4 	4 4 ¥	DN- DN- DN- Hast	5-9: SILT pund rock fragment; brown, nooder, signify purple calor 9-10: Sam as 5-9, best some soul	3.0
	4	Waith Maith ODBN Wet	9-10: Sant as 5-9 wet some saw	
	4	CODAN WET	9-10: Sant as 5-9 wet some soul	
	4	ODAN WET	ma elle mitt	
	V		- 4(e O 1)	-
		0.1	10-200 12: ROCK FRAGMENT	2.0
		mois	and sitt, some cand (A); brown.	
·			n odocinet	
			12-12: 5800(m): WH +++++++++++++++++++++++++++++++++++	2.3
·			Same optil from the oder house	3.80
•			12-15 CLAN SAME Sitt wat	21
•		+	how a new	
			CLEAR R. C.	
				-
	×			
		771		Time
oil Sample Collec	ted:	lime	Groundwater Sample Collected	a nue

ļ

Job Nu Drilling Drilling Sampli	imber: HEF			Doning india op	
Drilling Drilling Sampli	_	R1505.P2	-	Date: 7.15.2022	
Drilling Sampli	Company	: Core Down	Drilling	Time: 1240	
sampii	Equipment Equipment	nt: Geoprobe		Observery IC	be
ocatic	ng wethou	I ITIULAUCEI	e CL	Ubserver, Jo	u sha
Sample	e Interval	Come 6 + + +	- Tr unc	Description	
(fi	t bg)	Recovery	Moisture	(grain size, color, compaction,	PID
Top	Bottom	(π)		staining, odor)	(PPW)
0	5	4	Drys	0-15 ROCKFRAGMENT, and	2.0
			1	· Sand no odir, dy, white the	/
				1.5-2: SANDOF : dry tan no	3.0
				oder and tran	
				2-5: SILTSout brown, artin prover 1	a.1
			and the second	here no odar	
5	10	3.5	DM	5-1: ROOL FRAGMENT (powdered)	1.3
			1	Somes 14, White, arey, no oper	
				DEPEDB (-7: ROCIL FRAGISONS	2.0
	1		100	and an samme the star	
			~	7-10: SAND (F), Some rock frain.	10
				Drawae	1 0
0	15	4.0		10-13: ROCK FRAG and SOME (m);	3.0
				Oranne, brann, pick, no oder, wet	
				of 116 Hba.	
				12-15: GRAVEL and SILT, traceclari,	3.4
_				O Tourbe - ance - purple - tours, no odor, west	
				0.011.000	
	-				
ioil Sar	mple Colle	cted:	Time	Groundwater Sample Collected	Time
N	lo Brunole of	L Collected	P.P.		

ł

4.9.1

Project	: Bailey's	Automotive		Boring I.D.: 58-5	
Job Nu	mber: HEF	R1505.P2		Date: 7.13. Lore	
Drilling	Company	: Core Down	Drilling	Time: 1240	
Drilling Samalii	Equipment	it: Geoprope	Dintreal	Observer: JG	oe
Locatio	n: Carlo	BEL CHAR	of hilding	US west binding.	
Sample	Interval	NOT CRIMA	DAUDWALD)	Description	DID
(ft	bg)	Recovery	Moisture	(grain size, color, compaction,	(PPM)
Тор	Bottom	(ity		staining, odor)	(i i m)
0	S	3	Dry-Moist	0-05: ASPHIALT; grey, he poler	3.6
				0.5 2 Realtrage and Samd(P).	V
				Arow, no odo	
				2-5: SILT, little foll frag, some	
				Claying oddy Molst at 254,	36
-		1~		HAN	a.
S	10	C. h		S- 10: KOCK FRAGMENI and Silt	21
		-	-	bet at stitles, to over, proundich	
In	15	35	Wet	10-11 sameas - 10,	24
10	N	5	we.	11-19 coursesand, ra	240
			C	refocierag, brindic.	
	1		2	brnorg orn wet	
				no odon stain	
				· · · · · ·	
		<u></u>			
		-			
-					
-	~			· · · · · · · · · · · · · · · · · · ·	
eail Car	nala Calla	otoda	Time	Groundwater Sample Collected	Time
	inple Colle	cied.	Inne	Stoundwater Sample Conected	10116

Project	t: Bailev's	Automotive		Boring I.D.: SB-6	_
Job Nu	imber: HEI	R1505.P2		Date: 7 13 22	
Drilling	Company	: Core Down	Drilling	Time:	
Drilling	Equipme	nt: Geoprobe	1	Drilling Method, Direct push/dual t	ube
Sampli	ng Method	diretpu	sh maco	Observer: JG	_
Locatio	m: 24	5 N'S	8-5	The state	
Sample (fi	e interval t ba)	Recovery	Moisture	(grain size, color, compaction,	
Тор	Bottom	· (ft)		staining, odor)	(
0	3	25	Ant	TOLETON MOOPRO	
~			a.g	alles sand ano	
			Ŭ	no stan ador	
				1080	
				5.5	
Ó	5	25	dal	DIS GROW, SI H	2
~		0, -	- Cog	oray, in dry	1
				the obler star no	
				I'S S SIF. POCK	3
				Frig bio au-	-
				Madder Columbra	
5	#)	15	wet	58 SIFARN.	1
0	P	110	0.01	bra oral wetter	5
				sternledor	
				5 10 rock frag.	
				sme sit del	
				No onon stain	- L.
10	15	4	wet	loels madean	1
			wer,	10-12.5 sand coord	1
			-	CMC day, Sme an	av.
				wet ary no	C
				Edor . O gin	
				125-15 Wet coord	(1
				Sand ima rock	`
				Ford che clay, tal	L
				No odor	
Soil Sa	mple Colle	cted:	Time	Groundwater Sample Collected	Т
Co		810)	1200		4

,

ATTACHMENT 4 Laboratory Analytical Results

Pace Analytical Services, LLC 575 Broad Hollow Road Melville, NY 11747 (631)694-3040

August 01, 2022

Richard Kochan HRP Associates, Inc. 1 Fairchild Square Suite 110 Clifton Park, NY 12065

RE: Project: HER1505.P2 BAILEYS GARAGE 7/13 Pace Project No.: 70222268

Dear Richard Kochan:

Enclosed are the analytical results for sample(s) received by the laboratory on July 15, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Melville

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kimberley Mack

Kimberley M. Mack kimberley.mack@pacelabs.com (631)694-3040 Project Manager

Enclosures

cc: John Gorman Patrick Montuori, HRP Associates, Inc. Mark Wright, HRP Associates Inc Mark Wright, HRP Associates, Inc.

CERTIFICATIONS

Project: HER1505.P2 BAILEYS GARAGE 7/13

Pace Project No.: 70222268

Pace Analytical Services Long Island

575 Broad Hollow Rd, Melville, NY 11747 Connecticut Certification #: PH-0435 Delaware Certification # NY 10478 Maryland Certification #: 208 Massachusetts Certification #: M-NY026 New Hampshire Certification #: 2987 New Jersey Certification #: NY158 New York Certification #: 10478 Primary Accrediting Body Pennsylvania Certification #: 68-00350 Rhode Island Certification #: LAO00340 Virginia Certification # 460302

Project: HER1505.P2 BAILEYS GARAGE 7/13

Pace Project No.: 70222268

Sample: SB-1 (6-8)	Lab ID: 702	222268001	Collected: 07/13/2	22 10:3	0 Received: 07	/15/22 11:05 N	Aatrix: Solid	
Results reported on a "dry weight"	" basis and are ad	justed for p	ercent moisture, sa	ample	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Met	hod: EPA 60	010C Preparation M	ethod:	EPA 3050B			
	Pace Analytica	al Services -	Melville					
Lead	8.9	mg/kg	0.27	1	07/18/22 08:50	07/19/22 10:21	7439-92-1	
8270 MSSV PAH	Analytical Met	hod: EPA 82	270D Preparation M	ethod:	EPA 3545A			
	Pace Analytica	al Services -	Melville					
Acenaphthene	<73.8	ug/kg	73.8	1	07/20/22 10:45	07/21/22 19:58	83-32-9	
Acenaphthylene	<73.8	ug/kg	73.8	1	07/20/22 10:45	07/21/22 19:58	208-96-8	
Anthracene	<73.8	ug/kg	73.8	1	07/20/22 10:45	07/21/22 19:58	120-12-7	
Benzo(a)anthracene	<73.8	ua/ka	73.8	1	07/20/22 10:45	07/21/22 19:58	56-55-3	
Benzo(a)pyrene	<73.8	ua/ka	73.8	1	07/20/22 10:45	07/21/22 19:58	50-32-8	
Benzo(b)fluoranthene	<73.8	ug/kg	73.8	1	07/20/22 10:45	07/21/22 19:58	205-99-2	
Benzo(g.h.i)pervlene	<73.8	ua/ka	73.8	1	07/20/22 10:45	07/21/22 19:58	191-24-2	
Benzo(k)fluoranthene	<73.8	ua/ka	73.8	1	07/20/22 10:45	07/21/22 19:58	207-08-9	
Chrysene	<73.8	ua/ka	73.8	1	07/20/22 10:45	07/21/22 19:58	218-01-9	
Dibenz(a b)anthracene	<73.8	ug/kg	73.8	1	07/20/22 10:45	07/21/22 19:58	53-70-3	
Fluoranthene	<73.8	ug/kg	73.8	1	07/20/22 10:45	07/21/22 19:58	206-44-0	
Fluorene	<73.8	ug/kg	73.8	1	07/20/22 10:45	07/21/22 19:58	86-73-7	
Indeno(1 2 3-cd)pyrepe	<73.8	ug/kg	73.8	1	07/20/22 10:16	07/21/22 10:58	193-39-5	
Nanhthalene	~73.8	ug/kg	73.8	1	07/20/22 10:40	07/21/22 10:58	91-20-3	
Phenanthrene	~73.8	ug/kg	73.8	1	07/20/22 10:40	07/21/22 10:58	85-01-8	
Pyrene	<73.8	ug/kg	73.8	1	07/20/22 10:40	07/21/22 10:00	129-00-0	
Surrogates		ughtg	10.0	•	01720722 10.10	01/21/22 10:00	120 00 0	
1.2-Dichlorobenzene-d4 (S)	22	%	14-79	1	07/20/22 10:45	07/21/22 19:58	2199-69-1	
2-Fluorobiphenyl (S)	35	%	35-92	1	07/20/22 10:45	07/21/22 19:58	321-60-8	
Nitrobenzene-d5 (S)	33	%	30-84	1	07/20/22 10:45	07/21/22 19:58	4165-60-0	
p-Terphenyl-d14 (S)	47	%	46-107	1	07/20/22 10:45	07/21/22 19:58	1718-51-0	
8260C MSV 5035A-L Low Level	Analytical Met	hod: EPA 82	260C Preparation M	ethod:	EPA 5035A-L			
	Pace Analytica	al Services -	Melville					
1,2,4-Trimethylbenzene	<2.8	ug/kg	2.8	1	07/19/22 08:59	07/19/22 17:01	95-63-6	
1,3,5-Trimethylbenzene	<2.8	ug/kg	2.8	1	07/19/22 08:59	07/19/22 17:01	108-67-8	
Benzene	<2.8	ug/kg	2.8	1	07/19/22 08:59	07/19/22 17:01	71-43-2	
Ethylbenzene	<2.8	ug/kg	2.8	1	07/19/22 08:59	07/19/22 17:01	100-41-4	
Isopropylbenzene (Cumene)	<2.8	ug/kg	2.8	1	07/19/22 08:59	07/19/22 17:01	98-82-8	
Methyl-tert-butyl ether	<2.8	ug/kg	2.8	1	07/19/22 08:59	07/19/22 17:01	1634-04-4	
Naphthalene	<2.8	ug/kg	2.8	1	07/19/22 08:59	07/19/22 17:01	91-20-3	
Toluene	<2.8	ug/kg	2.8	1	07/19/22 08:59	07/19/22 17:01	108-88-3	
Xvlene (Total)	<5.5	ua/ka	5.5	1	07/19/22 08:59	07/19/22 17:01	1330-20-7	
n-Butvlbenzene	<2.8	ua/ka	2.8	1	07/19/22 08:59	07/19/22 17:01	104-51-8	
n-Propylbenzene	<2.8	ua/ka	2.8	1	07/19/22 08:59	07/19/22 17:01	103-65-1	
p-Isopropyltoluene	<2.8	ua/ka	2.8	1	07/19/22 08:59	07/19/22 17:01	99-87-6	
sec-Butvlbenzene	<2.8	ua/ka	2.8	1	07/19/22 08:59	07/19/22 17:01	135-98-8	
tert-Butylbenzene	<2.8	ua/ka	2.8	1	07/19/22 08:59	07/19/22 17:01	98-06-6	
Surrogates	12:0	~9,.,9	2.0		0., .0, <u>22</u> 00.00		20 00 0	
Toluene-d8 (S)	102	%	86-154	1	07/19/22 08:59	07/19/22 17:01	2037-26-5	
4-Bromofluorobenzene (S)	99	%	75-144	1	07/19/22 08:59	07/19/22 17:01	460-00-4	

Project: HER1505.P2 BAILEYS GARAGE 7/13

Pace Project No.: 70222268

Sample: SB-1 (6-8)	Lab ID: 7022	22268001	Collected: 07/13/2	2 10:3	0 Received: 07	/15/22 11:05 N	latrix: Solid	
Results reported on a "dry weight"	basis and are adj	usted for pe	rcent moisture, sa	mple s	ize and any dilut	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV 5035A-L Low Level	Analytical Meth Pace Analytical	od: EPA 826 Services - N	0C Preparation Me felville	ethod: E	EPA 5035A-L			
Surrogates 1,2-Dichloroethane-d4 (S)	96	%	82-112	1	07/19/22 08:59	07/19/22 17:01	17060-07-0	
Percent Moisture	Analytical Meth Pace Analytical	od: ASTM D: Services - N	2216-05M 1elville					
Percent Moisture	11.2	%	0.10	1		07/22/22 12:00		

Project: HER1505.P2 BAILEYS GARAGE 7/13

Pace Project No.: 70222268

Sample: SB-2 (8-10)	Lab ID: 702	22268002	Collected: 07/13/2	2 11:08	B Received: 07	/15/22 11:05 N	latrix: Solid	
Results reported on a "dry weight"	' basis and are adj	usted for p	ercent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	nod: EPA 60	10C Preparation Me	thod: E	EPA 3050B			
	Pace Analytica	I Services -	Melville					
Lead	18.3	mg/kg	0.25	1	07/18/22 08:50	07/19/22 10:23	7439-92-1	
8270 MSSV PAH	Analytical Meth	nod: EPA 82	70D Preparation Me	thod: E	EPA 3545A			
	Pace Analytica	I Services -	Melville					
Acenaphthene	<73.1	ua/ka	73.1	1	07/21/22 14:43	07/27/22 05:42	83-32-9	
Acenaphthylene	<73.1	ug/kg	73.1	1	07/21/22 14:43	07/27/22 05:42	208-96-8	
Anthracene	<73.1	ua/ka	73.1	1	07/21/22 14:43	07/27/22 05:42	120-12-7	
Benzo(a)anthracene	75.6	ua/ka	73.1	1	07/21/22 14:43	07/27/22 05:42	56-55-3	
Benzo(a)pvrene	83.6	ua/ka	73.1	1	07/21/22 14:43	07/27/22 05:42	50-32-8	
Benzo(b)fluoranthene	104	ug/kg	73.1	1	07/21/22 14:43	07/27/22 05:42	205-99-2	
Benzo(g,h,i)perylene	47.3J	ug/kg	73.1	1	07/21/22 14:43	07/27/22 05:42	191-24-2	
Benzo(k)fluoranthene	50.4J	ug/kg	73.1	1	07/21/22 14:43	07/27/22 05:42	207-08-9	
Chrysene	88.0	ug/kg	73.1	1	07/21/22 14:43	07/27/22 05:42	218-01-9	
Dibenz(a.h)anthracene	<73.1	ua/ka	73.1	1	07/21/22 14:43	07/27/22 05:42	53-70-3	
Fluoranthene	150	ug/kg	73.1	1	07/21/22 14:43	07/27/22 05:42	206-44-0	
Fluorene	<73.1	ug/kg	73.1	1	07/21/22 14:43	07/27/22 05:42	86-73-7	
Indeno(1.2.3-cd)pyrene	50.0J	ua/ka	73.1	1	07/21/22 14:43	07/27/22 05:42	193-39-5	
2-Methylnaphthalene	<73.1	ua/ka	73.1	1	07/21/22 14:43	07/27/22 05:42	91-57-6	
Naphthalene	<73.1	ua/ka	73.1	1	07/21/22 14:43	07/27/22 05:42	91-20-3	
Phenanthrene	64.5J	ua/ka	73.1	1	07/21/22 14:43	07/27/22 05:42	85-01-8	
Pvrene	118	ua/ka	73.1	1	07/21/22 14:43	07/27/22 05:42	129-00-0	
Surrogates		0 0						
1,2-Dichlorobenzene-d4 (S)	14	%	14-79	1	07/21/22 14:43	07/27/22 05:42	2199-69-1	
2-Fluorobiphenyl (S)	20	%	35-92	1	07/21/22 14:43	07/27/22 05:42	321-60-8	S0,S8
Nitrobenzene-d5 (S)	19	%	30-84	1	07/21/22 14:43	07/27/22 05:42	4165-60-0	S0,S8
p-Terphenyl-d14 (S)	27	%	46-107	1	07/21/22 14:43	07/27/22 05:42	1718-51-0	S0,S8
8260C MSV 5035A-L Low Level	Analytical Meth	nod: EPA 82	60C Preparation Me	thod: E	EPA 5035A-L			
	Pace Analytica	I Services -	Melville					
1,2,4-Trimethylbenzene	<2.3	ug/kg	2.3	1	07/19/22 08:59	07/19/22 17:21	95-63-6	
1,3,5-Trimethylbenzene	<2.3	ug/kg	2.3	1	07/19/22 08:59	07/19/22 17:21	108-67-8	
Benzene	<2.3	ug/kg	2.3	1	07/19/22 08:59	07/19/22 17:21	71-43-2	
Ethylbenzene	<2.3	ug/kg	2.3	1	07/19/22 08:59	07/19/22 17:21	100-41-4	
Isopropylbenzene (Cumene)	<2.3	ug/kg	2.3	1	07/19/22 08:59	07/19/22 17:21	98-82-8	
Methyl-tert-butyl ether	<2.3	ug/kg	2.3	1	07/19/22 08:59	07/19/22 17:21	1634-04-4	
Naphthalene	<2.3	ug/kg	2.3	1	07/19/22 08:59	07/19/22 17:21	91-20-3	
Toluene	<2.3	ug/kg	2.3	1	07/19/22 08:59	07/19/22 17:21	108-88-3	
Xylene (Total)	<4.6	ug/kg	4.6	1	07/19/22 08:59	07/19/22 17:21	1330-20-7	
n-Butylbenzene	<2.3	ug/kg	2.3	1	07/19/22 08:59	07/19/22 17:21	104-51-8	
n-Propylbenzene	<2.3	ug/ka	2.3	1	07/19/22 08:59	07/19/22 17:21	103-65-1	
p-lsopropyltoluene	<2.3	ug/ka	2.3	1	07/19/22 08:59	07/19/22 17:21	99-87-6	
sec-Butylbenzene	<2.3	ug/kg	2.3	1	07/19/22 08:59	07/19/22 17:21	135-98-8	
tert-Butylbenzene	<2.3	ua/ka	2.3	1	07/19/22 08:59	07/19/22 17:21	98-06-6	
Surrogates		5.5					-	
Toluene-d8 (S)	102	%	86-154	1	07/19/22 08:59	07/19/22 17:21	2037-26-5	

Project: HER1505.P2 BAILEYS GARAGE 7/13

Pace Project No.: 70222268

Sample: SB-2 (8-10)	Lab ID: 702	22268002	Collected: 07/13/2	2 11:08	8 Received: 07	/15/22 11:05 N	latrix: Solid	
Results reported on a "dry weight" l	basis and are adj	usted for p	ercent moisture, sa	mple s	ize and any dilut	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV 5035A-L Low Level	Analytical Meth	nod: EPA 82	60C Preparation Me	thod: E	PA 5035A-L			
	Pace Analytica	I Services -	Melville					
Surrogates								
4-Bromofluorobenzene (S)	98	%	75-144	1	07/19/22 08:59	07/19/22 17:21	460-00-4	
1,2-Dichloroethane-d4 (S)	98	%	82-112	1	07/19/22 08:59	07/19/22 17:21	17060-07-0	
Percent Moisture	Analytical Meth	nod: ASTM I	D2216-05M					
	Pace Analytica	I Services -	Melville					
Percent Moisture	8.6	%	0.10	1		07/22/22 12:00		

Project: HER1505.P2 BAILEYS GARAGE 7/13

Pace Project No.: 70222268

Sample: SB-3 (12.5-13.5)	Lab ID: 702	22268003	Collected: 07/13/2	2 12:0	0 Received: 07	/15/22 11:05 N	latrix: Solid	
Results reported on a "dry weight"	' basis and are adj	iusted for pe	rcent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	nod: EPA 601	0C Preparation Me	thod: E	EPA 3050B			
	Pace Analytica	I Services - N	lelville					
Lead	7.1	mg/kg	0.29	1	07/18/22 08:50	07/19/22 10:30	7439-92-1	
8270 MSSV PAH	Analytical Met	nod: EPA 827	0D Preparation Me	thod: E	EPA 3545A			
	Pace Analytica	I Services - M	' Ielville					
Acenaphthene	<79.3	ug/kg	79.3	1	07/20/22 10:45	07/21/22 21:04	83-32-9	
Acenaphthylene	<79.3	ug/kg	79.3	1	07/20/22 10:45	07/21/22 21:04	208-96-8	
Anthracene	<79.3	ug/kg	79.3	1	07/20/22 10:45	07/21/22 21:04	120-12-7	
Benzo(a)anthracene	<79.3	ug/kg	79.3	1	07/20/22 10:45	07/21/22 21:04	56-55-3	
Benzo(a)pyrene	<79.3	ug/kg	79.3	1	07/20/22 10:45	07/21/22 21:04	50-32-8	
Benzo(b)fluoranthene	<79.3	ug/kg	79.3	1	07/20/22 10:45	07/21/22 21:04	205-99-2	
Benzo(g,h,i)perylene	<79.3	ug/kg	79.3	1	07/20/22 10:45	07/21/22 21:04	191-24-2	
Benzo(k)fluoranthene	<79.3	ug/kg	79.3	1	07/20/22 10:45	07/21/22 21:04	207-08-9	
Chrysene	<79.3	ug/kg	79.3	1	07/20/22 10:45	07/21/22 21:04	218-01-9	
Dibenz(a,h)anthracene	<79.3	ug/kg	79.3	1	07/20/22 10:45	07/21/22 21:04	53-70-3	
Fluoranthene	<79.3	ug/kg	79.3	1	07/20/22 10:45	07/21/22 21:04	206-44-0	
Fluorene	<79.3	ug/kg	79.3	1	07/20/22 10:45	07/21/22 21:04	86-73-7	
Indeno(1,2,3-cd)pyrene	<79.3	ug/kg	79.3	1	07/20/22 10:45	07/21/22 21:04	193-39-5	
2-Methylnaphthalene	<79.3	ug/kg	79.3	1	07/20/22 10:45	07/21/22 21:04	91-57-6	
Naphthalene	<79.3	ug/kg	79.3	1	07/20/22 10:45	07/21/22 21:04	91-20-3	
Phenanthrene	<79.3	ug/kg	79.3	1	07/20/22 10:45	07/21/22 21:04	85-01-8	
Pyrene	<79.3	ug/kg	79.3	1	07/20/22 10:45	07/21/22 21:04	129-00-0	
Surrogates		0 0						
1,2-Dichlorobenzene-d4 (S)	28	%	14-79	1	07/20/22 10:45	07/21/22 21:04	2199-69-1	
2-Fluorobiphenyl (S)	55	%	35-92	1	07/20/22 10:45	07/21/22 21:04	321-60-8	
Nitrobenzene-d5 (S)	44	%	30-84	1	07/20/22 10:45	07/21/22 21:04	4165-60-0	
p-Terphenyl-d14 (S)	71	%	46-107	1	07/20/22 10:45	07/21/22 21:04	1718-51-0	
8260C MSV 5035A-L Low Level	Analytical Mether	nod: EPA 826	0C Preparation Me	thod: E	EPA 5035A-L			
	Pace Analytica	I Services - N	lelville					
1,2,4-Trimethylbenzene	<11.5	ug/kg	11.5	1	07/19/22 08:59	07/19/22 17:41	95-63-6	
1,3,5-Trimethylbenzene	<11.5	ug/kg	11.5	1	07/19/22 08:59	07/19/22 17:41	108-67-8	
Benzene	<11.5	ug/kg	11.5	1	07/19/22 08:59	07/19/22 17:41	71-43-2	
Ethylbenzene	<11.5	ug/kg	11.5	1	07/19/22 08:59	07/19/22 17:41	100-41-4	
Isopropylbenzene (Cumene)	<11.5	ug/kg	11.5	1	07/19/22 08:59	07/19/22 17:41	98-82-8	
Methyl-tert-butyl ether	<11.5	ug/kg	11.5	1	07/19/22 08:59	07/19/22 17:41	1634-04-4	
Naphthalene	<11.5	ug/kg	11.5	1	07/19/22 08:59	07/19/22 17:41	91-20-3	
Toluene	<11.5	ug/kg	11.5	1	07/19/22 08:59	07/19/22 17:41	108-88-3	
Xylene (Total)	<23.0	ug/kg	23.0	1	07/19/22 08:59	07/19/22 17:41	1330-20-7	
n-Butylbenzene	<11.5	ug/kg	11.5	1	07/19/22 08:59	07/19/22 17:41	104-51-8	
n-Propylbenzene	<11.5	ug/kg	11.5	1	07/19/22 08:59	07/19/22 17:41	103-65-1	
p-Isopropyltoluene	<11.5	ug/kg	11.5	1	07/19/22 08:59	07/19/22 17:41	99-87-6	
sec-Butylbenzene	<11.5	ug/kg	11.5	1	07/19/22 08:59	07/19/22 17:41	135-98-8	
tert-Butylbenzene	<11.5	ug/kg	11.5	1	07/19/22 08:59	07/19/22 17:41	98-06-6	
Surrogates		-						
Toluene-d8 (S)	101	%	86-154	1	07/19/22 08:59	07/19/22 17:41	2037-26-5	

Project: HER1505.P2 BAILEYS GARAGE 7/13

Pace Project No.: 70222268

Sample: SB-3 (12.5-13.5)	Lab ID: 7022	22268003	Collected: 07/13/2	2 12:0	0 Received: 07	/15/22 11:05 N	latrix: Solid	
Results reported on a "dry weight"	basis and are adji	usted for p	ercent moisture, sa	mple s	ize and any dilut	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV 5035A-L Low Level	Analytical Meth Pace Analytical	od: EPA 82 Services -	60C Preparation Me	ethod: E	EPA 5035A-L			
Surrogates	,							
4-Bromofluorobenzene (S)	101	%	75-144	1	07/19/22 08:59	07/19/22 17:41	460-00-4	
1,2-Dichloroethane-d4 (S)	91	%	82-112	1	07/19/22 08:59	07/19/22 17:41	17060-07-0	
Percent Moisture	Analytical Meth	od: ASTM	D2216-05M					
	Pace Analytical	Services -	Melville					
Percent Moisture	16.4	%	0.10	1		07/22/22 12:00		

Project: HER1505.P2 BAILEYS GARAGE 7/13

Pace Project No.: 70222268

Results reported on a "dry weight" basis and are adjusted for percent molsture, sample size and any dilutions: Parameters Results Report Linit DF Prepared Analyzed CAS No. Qual 6010 MET CP Analytical Method: EPA 60100 Preparation Method: EPA 8350B Preparation Method: EPA 8270D Preparat 82000000000000000000000000000000000000	Sample: SB-5 (2-5)	Lab ID: 702	22268004	Collected: 07/13/2	22 13:0	0 Received: 07	/15/22 11:05 N	Atrix: Solid	
Parameters Results Units Report Linit DF Prepared Analyzed CAS No. Qual 6010 METICP Analytical Method: EPA 6010C Preparation Method: EPA 3050B 7430-921.032 7439-921.032	Results reported on a "dry weight"	' basis and are ad	justed for p	ercent moisture, sa	ample s	size and any dilut	tions.		
Borio MET ICP Analytical Method: EPA 6010C Proparation Method: EPA 3050B Pace Analytical Services - Metville 0.13 1 0.11/12/20.850 0.11/19/20.10.32 7439-92.1 Barro MSS VPAH Analytical Method: EPA 8020 Pozention EPA 345A Pace Analytical Services - Metville Acenaphthylene 4339 ug/kg 339 5 0.7720/22 10.45 0.7721/22 23.45 28.39.29 Acenaphthylene 4339 ug/kg 339 5 0.7720/22 10.45 0.7721/22 23.45 28.09.66.8 Anthroane 4339 ug/kg 339 5 0.7720/22 10.45 0.7721/22 23.45 28.09.66.8 Benzo(a)/Inframene 4339 ug/kg 339 5 0.7720/22 10.45 0.7721/22 23.45 28.09.92 Benzo(a)/Inframene 4339 ug/kg 339 5 0.7720/22 10.45 0.7721/22 23.45 29.69.2 Benzo(a)/Inframene 4339 ug/kg 339 5 0.7720/22 10.45 0.7721/22 23.45 29.69.2 Benzo(a)/Inframene 4339 <thug kg<="" th=""> 339 5</thug>	Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Proce Analytical Services - Mexiule Lead 17.2 mg/kg 0.25 1 0.719/22 10:32 7439-92-1 SZ70 MSSV PAH Analytical Services - Melville Pace Analytical Services - Melville Acenaphthene <339	6010 MET ICP	Analytical Met	hod: EPA 60	010C Preparation M	ethod: I	EPA 3050B			
Laad 17.2 mg/kg 0.25 1 07/18/22 0.85 07/19/22 10.32 7439-924 8270 MSSV PAH Anabjical Methic:: EPA 82701 Preparation Methic:: EVA 345 83-329 Acenaphthene <33		Pace Analytica	al Services -	Melville					
Bar Daylical Method: EPA 82700 Preparation Method: Web/lise EPA 3545A Acenaphthone 339 ug/kg 339 5 07/2022 10:45 07/2122 23:45 83-32.9 Acenaphthylene 339 ug/kg 339 5 07/2022 10:45 07/2122 23:45 80-32.9 Acenaphthylene 339 ug/kg 339 5 07/2022 10:45 07/2122 23:45 80-53.3 Benzo(a)prene 339 ug/kg 339 5 07/2022 10:45 07/2122 23:45 80-52.8 Benzo(b)prene 339 ug/kg 339 5 07/2022 10:45 07/2122 23:45 101-22.2 Benzo(b)prene 339 ug/kg 339 5 07/2022 10:45 07/2122 23:45 101-22.2 Benzo(b)prene 339 ug/kg 339 5 07/2022 10:45 07/2122 23:45 102-12.2 Benzo(b)prene 339 ug/kg 339 5 07/2022 10:45 07/2122 23:45 103-07.2 Fluorene 339 ug/kg 339 5	Lead	17.2	mg/kg	0.25	1	07/18/22 08:50	07/19/22 10:32	7439-92-1	
Acenaphthene 4339 ug/kg 339 5 07/20/22 10.45 07/21/22 23.45 208-96-8 Acenaphthylene 4339 ug/kg 339 5 07/20/22 10.45 07/21/22 23.45 208-96-8 Anthracene 4339 ug/kg 339 5 07/20/22 10.45 07/21/22 23.45 50-32-8 Benzo(a)anthracene 4339 ug/kg 339 5 07/20/22 10.45 07/21/22 23.45 50-32-8 Benzo(a)(numenthene 4339 ug/kg 339 5 07/20/22 10.45 07/21/22 3.45 207-649 Chrysene 4339 ug/kg 339 5 07/20/22 10.45 07/21/22 3.45 206-44-0 Fluoranthene 4339 ug/kg 339 5 07/20/22 10.45 07/21/22 3.45 206-44-0 Fluoranthene 4339 ug/kg 339 5 07/20/22 10.45 07/21/22 23.45 2	8270 MSSV PAH	Analytical Met Pace Analytica	hod: EPA 82 al Services -	270D Preparation M	ethod: I	EPA 3545A			
Acenaphilyeine <339	Assessments			220	~	07/00/00 40.45	07/04/00 00.45	00.00.0	
Acena putrylene <339	Acenaphthelese	<339	ug/kg	339	5	07/20/22 10:45	07/21/22 23:45	83-32-9	
Anthracene <339	Acenaphthylene	<339	ug/kg	339	5	07/20/22 10:45	07/21/22 23:45	208-96-8	
Benzo(a)prima	Anthracene	<339	ug/kg	339	5	07/20/22 10:45	07/21/22 23:45	120-12-7	
Benzolspinene <339 ug/kg 339 5 07/20/22 10/4 07/21/22 23/45 05/32/4 Benzolghilvoranthene <339	Benzo(a)anthracene	<339	ug/kg	339	5	07/20/22 10:45	07/21/22 23:45	56-55-3	
Benzo(g.h.jpervlene Benzo(g.h.jpervlene Benzo(g.h.jpervlene Benzo(g.h.jpervlene Benzo(g.h.jpervlene A339 ug/kg A339 5 07/20/22 10:45 07/21/22 23:45 191-24-2 Benzo(k.jpurene A339 ug/kg A339 5 07/20/22 10:45 07/21/22 23:45 191-24-2 Dibenz(a.h)anthracene A339 ug/kg A339 5 07/20/22 10:45 07/21/22 23:45 191-01-9 Dibenz(a.h)anthracene A339 ug/kg A339 5 07/20/22 10:45 07/21/22 23:45 193-39-5 Fluoranthene A339 ug/kg A339 5 07/20/22 10:45 07/21/22 23:45 193-39-5 7/20/22 10:45 07/21/22 23:45 193-39-5 2.Methylnaphthalene A339 ug/kg A339 5 07/20/22 10:45 07/21/22 23:45 193-39-5 2.Methylnaphthalene A339 ug/kg A339 5 07/20/22 10:45 07/21/22 23:45 19-00-0 Surrogates 1,2-Dichlorobenzene-d4 (S) 45 % 14-79 5 07/20/22 10:45 07/21/22 23:45 19-00-0 Surrogates 1,2-Dichlorobenzene-d4 (S) 46 % 46-107 5 07/20/22 10:45 07/21/22 23:45 219-69-1 2.Fluorobjhenzene 4.2.5 ug/kg 2.5 1 07/19/22 10:45 07/21/22 23:45 174-60-8 Nitrobenzene-d5 (S) 48 % 30-84 5 07/20/22 10:45 07/21/22 23:45 174-60-8 Nitrobenzene-d5 (S) 48 % 46-107 5 07/20/22 10:45 07/21/22 23:45 174-60-8 Nitrobenzene-d5 (S) 48 % 46-107 5 07/20/22 10:45 07/21/22 23:45 174-60-8 Nitrobenzene-d5 (S) 48 % 46-107 5 07/20/22 10:45 07/21/22 23:45 174-61-0 Benzene 2.5 ug/kg 2.5 1 07/19/22 18:01 07-63-8 Benzene 2.5 ug/kg 2.5 1 07/19/22 18:01 00-67-8 Benzene 2.5 ug/kg 2.5 1 07/19/22 18:01 10-64-7-8 Benzene 2.5 ug/kg 2.5 1 07/19/22 18:01 10-41-4 Sopropylbenzene 2.5 ug/kg 2.5 1 07/19/22 18:01 10-65-1 Sopropylbenzen	Benzo(a)pyrene	<339	ug/kg	339	5	07/20/22 10:45	07/21/22 23:45	50-32-8	
Benzog(k)/uperylene Benzog(k)/uperylene Benzog(k)/uperylene Benzog(k)/uperylene Benzog(k)/uperylene Benzog(k)/uperylene Benzog(k)/uperylene Bug/kg 339 5 07/20/22 10.45 07/21/22 23.45 270-08-9 Chrysene Benzog(k)/uperylene Biolog and the state of	Benzo(b)fluoranthene	<339	ug/kg	339	5	07/20/22 10:45	07/21/22 23:45	205-99-2	
Benzok(#lucranthene -339 ug/kg 339 5 07/20/22 10.45 07/21/22 23.45 207-08-9 Dibenz(a,h)anthracene -339 ug/kg 339 5 07/20/22 10.45 07/21/22 23.45 207-08-9 Plubranthene -339 ug/kg 339 5 07/20/22 10.45 07/21/22 23.45 206-44-0 Fluoranthene -339 ug/kg 339 5 07/20/22 10.45 07/21/22 23.45 69-73-7 Indenol(1,2,3-cd)pyrene -339 ug/kg 339 5 07/20/22 10.45 07/21/22 23.45 50-76 Naphthalene -339 ug/kg 339 5 07/20/22 10.45 07/21/22 23.45 50-76 Naphthalene -339 ug/kg 339 5 07/20/22 10.45 07/21/22 23.45 12-0-0-0 Surrogates 12-Dichorobarzene-d4 (S) 45 % 30-92 5 07/20/22 10.45 <td< td=""><td>Benzo(g,h,i)perylene</td><td><339</td><td>ug/kg</td><td>339</td><td>5</td><td>07/20/22 10:45</td><td>07/21/22 23:45</td><td>191-24-2</td><td></td></td<>	Benzo(g,h,i)perylene	<339	ug/kg	339	5	07/20/22 10:45	07/21/22 23:45	191-24-2	
Chrysene <339 ug/kg 339 5 07/20/22 10.45 07/21/22 23.45 218-01-9 Dibenz(a,1)natriacene <339 ug/kg 339 5 07/20/22 10.45 07/21/22 23.45 53-70.3 Fluoranthene <339 ug/kg 339 5 07/20/22 10.45 07/21/22 23.45 86-73-7 Indeno(1,2,3-cd)pyrene <339 ug/kg 339 5 07/20/22 10.45 07/21/22 23.45 193-30-5 2-Methylnaphthalene <339 ug/kg 339 5 07/20/22 10.45 07/21/22 23.45 91-57-6 Naphthalene <339 ug/kg 339 5 07/20/22 10.45 07/21/22 23.45 91-57-6 Naphthalene <339 ug/kg 339 5 07/20/22 10.45 07/21/22 23.45 91-57-6 Naphthalene <339 ug/kg 339 5 07/20/22 10.45 07/21/22 23.45 91-50-3 Phenanthrene <339 ug/kg 339 5 07/20/22 10.45 07/21/22 23.45 91-50-3 Phenanthrene <339 ug/kg 339 5 07/20/22 10.45 07/21/22 23.45 91-50-3 Napthalene <339 ug/kg 339 5 07/20/22 10.45 07/21/22 23.45 199-69-1 1.2-Dichlorobenzene-d4 (S) 45 % 14-79 5 07/20/22 10.45 07/21/22 23.45 2199-69-1 2-Fluorobiphenyl (S) 52 % 35-92 5 07/20/22 10.45 07/21/22 23.45 321-60-8 Nitrobenzene-d5 (S) 48 % 30-84 5 07/20/22 10.45 07/21/22 23.45 116-6-8 Nitrobenzene-d5 (S) 48 % 46-107 5 07/20/22 10.45 07/21/22 23.45 4165-60-0 p-Terphenyl 14 (S) 64 % 46-107 5 07/20/22 10.45 07/21/22 23.45 4165-60-0 p-Terphenyl 14 (S) 64 % 46-107 5 07/20/22 10.45 07/12/22 23.45 1718-51-0 8260C MSV 5035A-L Low Level Analytical Method: EPA 8260C Preparation Method: EPA 5035A-L Pace Analytical Services - Methille 1,2,4-Trimethylbenzene <2.5 ug/kg 2.5 1 07/19/22 08:59 07/19/22 18:01 10-8-67-8 Benzene <2.5 ug/kg 2.5 1 07/19/22 08:59 07/19/22 18:01 10-4-14 Isopropylbenzene (2.5 ug/kg 2.5 1 07/19/22 08:59 07/19/22 18:01 10-4-14 Isopropylbenzene (2.5 ug/kg 2.5 1 07/19/22 08:59 07/19/22 18:01 10-4-14 Isopropylbenzene (2.5 ug/kg 2.5 1 07/19/22 08:59 07/19/22 18:01 10-4-14 Isopropylbenzene (2.5 ug/kg 2.5 1 07/19/22 08:59 07/19/22 18:01 10-4-14 Isopropylbenzene (2.5 ug/kg 2.5 1 07/19/22 08:59 07/19/22 18:01 10-4-14 Isopropylbenzene <2.5 ug/kg 2.5 1 07/19/22 08:59 07/19/22 18:01 10-4-14 Isopropylbenzene <2.5 ug/kg 2.5 1 07/19/22 08:59 07/19/22 18:01 10-4-14 Isopropylbenzene <2.5 ug/kg 2.5 1 07/19/22 08:59 07/19/22 18:	Benzo(k)fluoranthene	<339	ug/kg	339	5	07/20/22 10:45	07/21/22 23:45	207-08-9	
Dibenz(a,h)anthracene <339 ug/kg 339 5 07/20/22 045 07/21/22 034 07/21/22	Chrysene	<339	ug/kg	339	5	07/20/22 10:45	07/21/22 23:45	218-01-9	
Fluoranthene <339 ug/kg 339 5 07/20/22 10:45 07/21/22 3:45 26.6440 Fluorene <339 ug/kg 339 5 07/20/22 10:45 07/21/22 3:45 86.73.7 Indeno(1,2,3-cd)pyrene <339 ug/kg 339 5 07/20/22 10:45 07/21/22 3:45 91-20.3 Phenanthrene <339 ug/kg 339 5 07/20/22 10:45 07/21/22 3:45 91-20.3 Phenanthrene <339 ug/kg 339 5 07/20/22 10:45 07/21/22 3:45 91-20.3 Phenanthrene <339 ug/kg 339 5 07/20/22 10:45 07/21/22 3:45 91-20.3 Phenanthrene <339 ug/kg 339 5 07/20/22 10:45 07/21/22 3:45 91-20.3 Pyrene <339 ug/kg 339 5 07/20/22 10:45 07/21/22 3:45 91-20.3 Pyrene <339 ug/kg 339 5 07/20/22 10:45 07/21/22 3:45 2199-69-1 2-Fluorobiphenyl (S) 52 % 35-92 5 07/20/22 10:45 07/21/22 3:45 2199-69-1 2-Fluorobiphenyl (S) 52 % 35-92 5 07/20/22 10:45 07/21/22 3:45 2199-69-1 2-Fluorobiphenyl (S) 64 % 46-107 5 07/20/22 10:45 07/21/22 3:45 4165-60-0 p-Terphenyl-d14 (S) 64 % 46-107 5 07/20/22 10:45 07/21/22 3:45 4165-60-0 p-Terphenyl-d14 (S) 64 % 46-107 5 07/20/22 10:45 07/21/22 3:45 1718-51-0 8260C MSV 5035A-L Low Level Analytical Method: EPA 8260C Preparation Method: EPA 5035A-L Pace Analytical Services - Melville 1,2,4-Trimethylbenzene <2.5 ug/kg 2.5 1 07/19/22 08:59 07/19/22 18:01 95-63-6 1,3,5-Timethylbenzene <2.5 ug/kg 2.5 1 07/19/22 08:59 07/19/22 18:01 71-43-2 Ethylbenzene <2.5 ug/kg 2.5 1 07/19/22 08:59 07/19/22 18:01 71-43-2 Ethylbenzene <2.5 ug/kg 2.5 1 07/19/22 08:59 07/19/22 18:01 71-43-2 Ethylbenzene <2.5 ug/kg 2.5 1 07/19/22 08:59 07/19/22 18:01 86-8-8 Methyl-tert-butyl ether <2.5 ug/kg 2.5 1 07/19/22 08:59 07/19/22 18:01 184-04-4 Napthhalene <2.5 ug/kg 2.5 1 07/19/22 08:59 07/19/22 18:01 184-04-4 Napthhalene <2.5 ug/kg 2.5 1 07/19/22 08:59 07/19/22 18:01 184-04-4 Napthhalene <2.5 ug/kg 2.5 1 07/19/22 08:59 07/19/22 18:01 1830-20-7 n-Butylbenzene <2.5 ug/kg 2.5 1 07/19/22 08:59 07/19/22 18:01 1330-20-7 n-Butylbenzene <2.5 ug/kg 2.5 1 07/19/22 08:59 07/19/22 18:01 1330-20-7 n-Butylbenzene <2.5 ug/kg 2.5 1 07/19/22 08:59 07/19/22 18:01 1330-20-7 n-Butylbenzene <2.5 ug/kg 2.5 1 07/19/22 08:59 07/19/22 18:01 1330-20	Dibenz(a,h)anthracene	<339	ug/kg	339	5	07/20/22 10:45	07/21/22 23:45	53-70-3	
Fluorene -339 ug/kg 339 5 07/20/22 10.40 67/21/22 22.3:45 86-73-7 Indeno(1,2,3-cd)pyrene -339 ug/kg 339 5 07/20/22 10.45 07/21/22 23:45 193-39-5 2-Methylnaphthalene -339 ug/kg 339 5 07/20/22 10.45 07/21/22 23:45 91-57-6 Naphthalene -339 ug/kg 339 5 07/20/22 10.45 07/21/22 23:45 81-0-3 Pyrene -339 ug/kg 339 5 07/20/22 10.45 07/21/22 23:45 129-60-1 Surrogates	Fluoranthene	<339	ug/kg	339	5	07/20/22 10:45	07/21/22 23:45	206-44-0	
Inden(1,2,3-cd)pyrene -339 ug/kg 339 5 07/20/22 10.45 07/21/22 23.45 193-39-5 2-Methylnaphthalene -339 ug/kg 339 5 07/20/22 10.45 07/21/22 23.45 11-20-3 Phenanthrene -339 ug/kg 339 5 07/20/22 10.45 07/21/22 23.45 12-0-3 Pyrene -339 ug/kg 339 5 07/20/22 10.45 07/21/22 23.45 12-0-3 Surrogates	Fluorene	<339	ug/kg	339	5	07/20/22 10:45	07/21/22 23:45	86-73-7	
2-Methylnaphthalene <339	Indeno(1,2,3-cd)pyrene	<339	ug/kg	339	5	07/20/22 10:45	07/21/22 23:45	193-39-5	
Naphtalene <339 ug/kg 339 5 07/20/22 10:23:45 91:20:3 Phenanthrene <339	2-Methylnaphthalene	<339	ug/kg	339	5	07/20/22 10:45	07/21/22 23:45	91-57-6	
Phenanthrene <339 ug/kg 339 5 07/20/22 10:45 07/21/22 23:45 85:0-1.8 Pyrene <339	Naphthalene	<339	ug/kg	339	5	07/20/22 10:45	07/21/22 23:45	91-20-3	
Pyrene <339 ug/kg 339 5 07/20/22 10:45 07/21/22 23:45 129-00-0 Surrogates 12-Dichlorobenzene-d4 (S) 45 % 14-79 5 07/20/22 10:45 07/21/22 23:45 2199-69-1 2-Fluorobiphenyl (S) 52 % 35-92 5 07/20/22 10:45 07/21/22 23:45 321-60-8 Nitrobenzene-d5 (S) 48 % 30-84 5 07/20/22 10:45 07/21/22 23:45 145-60-0 p-Terphenyl-d14 (S) 64 % 46-107 5 07/20/22 10:45 07/21/22 23:45 1516-0-0 8260C MSV 5035A-L Low Level Analytical Method: EPA 8260C Preparation Method: EPA 5035A-L 07/19/22 08:59 07/19/22 18:01 95-63-6 1,3.5-Trimethylbenzene <2.5	Phenanthrene	<339	ug/kg	339	5	07/20/22 10:45	07/21/22 23:45	85-01-8	
Surrogates 1,2-Dichlorobenzene-d4 (S) 45 % 14-79 5 07/20/22 10:45 07/21/22 23:45 2199-69-1 2-Fluorobiphenyl (S) 52 % 35-92 5 07/20/22 10:45 07/21/22 23:45 321-60-8 Nitrobenzene-d5 (S) 48 % 30-84 5 07/20/22 10:45 07/21/22 23:45 165-60-0 p-Terphenyl-d14 (S) 64 % 46-107 5 07/20/22 10:45 07/21/22 23:45 178-51-0 BaceC MSV 5035A-L Low Level Analytical Method: EPA 8260C Preparation Method: EPA 5035A-L Pace Analytical Services - Melville 1,2,4-Trimethylbenzene 2.5 ug/kg 2.5 1 07/19/22 08:59 07/19/22 18:01 95-63-6 1,3,5-Trimethylbenzene 2.5 ug/kg 2.5 1 07/19/22 08:59 07/19/22 18:01 100-67-8 Benzene 2.5 ug/kg 2.5 1 07/19/22 08:59 07/19/22 18:01 100-41-4 Sopropylbenzene (Curmene) 2.5 ug/kg <td< td=""><td>Pyrene</td><td><339</td><td>ug/kg</td><td>339</td><td>5</td><td>07/20/22 10:45</td><td>07/21/22 23:45</td><td>129-00-0</td><td></td></td<>	Pyrene	<339	ug/kg	339	5	07/20/22 10:45	07/21/22 23:45	129-00-0	
1,2-Dicklorobenzene-d4 (S) 45 % 14-79 5 07/20/22 10:45 07/21/22 23:45 2199-69-1 2-Fluorobiphenyl (S) 52 % 35-92 5 07/20/22 10:45 07/21/22 23:45 321-60-8 Nitrobenzene-d5 (S) 48 % 30-84 5 07/20/22 10:45 07/21/22 23:45 4165-60-0 p-Terphenyl-d14 (S) 64 % 46-107 5 07/20/22 10:45 07/21/22 23:45 1718-51-0 8260C MSV 5035A-L Low Level Analytical Method: EPA 8260C Preparation Method: EPA 5035A-L Pace Analytical Services - Melville 97/19/22 18:01 95-63-6 1,3,5-Trimethylbenzene <2.5	Surrogates								
2-Fluorobiphenyl (S) 52 % 35-92 5 07/20/22 10:45 07/21/22 23:45 321-60-8 Nitrobenzene-d5 (S) 48 % 30-84 5 07/20/22 10:45 07/21/22 23:45 4165-60-0 p-Terphenyl-d14 (S) 64 % 46-107 5 07/20/22 10:45 07/21/22 23:45 1718-51-0 8260C MSV 5035A-L Low Level Analytical Method: EPA 8260C Preparation Method: EPA 5035A-L Pace Analytical Services - Melville 1,2,4-Trimethylbenzene <2.5	1,2-Dichlorobenzene-d4 (S)	45	%	14-79	5	07/20/22 10:45	07/21/22 23:45	2199-69-1	
Nitrobenzene-d5 (S) 48 % 30-84 5 07/20/22 10:45 07/21/22 23:45 4165-60-0 p-Terphenyl-d14 (S) 64 % 46-107 5 07/20/22 10:45 07/21/22 23:45 1718-51-0 8260C MSV 5035A-L Low Level Analytical Method: EPA 8260C Preparation Method: EPA 5035A-L Pace Analytical Services - Melville EPA 5035A-L 97/19/22 18:01 95-63-6 1,2,4-Trimethylbenzene <2.5 ug/kg 2.5 1 07/19/22 08:59 07/19/22 18:01 108-67-8 Benzene <2.5 ug/kg 2.5 1 07/19/22 08:59 07/19/22 18:01 104-67-8 Benzene <2.5 ug/kg 2.5 1 07/19/22 08:59 07/19/22 18:01 10-41-4 Isopropylbenzene (Cumene) <2.5 ug/kg 2.5 1 07/19/22 08:59 07/19/22 18:01 106-41-4 Naphthalene <2.5 ug/kg 2.5 1 07/19/22 08:59 07/19/22 18:01 163-04-4 Naphthalene <2.5 ug/kg 2.5 1 07/19/22 08:59 07/19/22 18:01 103-02-7 Toluene <2.5 ug/kg 2.5	2-Fluorobiphenyl (S)	52	%	35-92	5	07/20/22 10:45	07/21/22 23:45	321-60-8	
p-Terphenyl-d14 (S) 64 % 46-107 5 07/20/22 10:45 07/21/22 23:45 1718-51-0 8260C MSV 5035A-L Low Level Analytical Method: EPA 8260C Preparation Method: EPA 5035A-L Pace Analytical Services - Melville Value 07/19/22 08:59 07/19/22 18:01 95-63-6 1,3,5-Trimethylbenzene <2.5	Nitrobenzene-d5 (S)	48	%	30-84	5	07/20/22 10:45	07/21/22 23:45	4165-60-0	
8260C MSV 5035A-L Low Level Analytical Method: EPA 8260C Preparation Method: EPA 5035A-L Pace Analytical Services - Metville 1,2,4-Trimethylbenzene <2.5	p-Terphenyl-d14 (S)	64	%	46-107	5	07/20/22 10:45	07/21/22 23:45	1718-51-0	
Pace Analytical Services - Melville 1,2,4-Trimethylbenzene <2.5	8260C MSV 5035A-L Low Level	Analytical Met	hod: EPA 82	260C Preparation M	ethod: I	EPA 5035A-L			
1,2,4-Trimethylbenzene<2.5ug/kg2.5107/19/22 08:5907/19/22 18:0195-63-61,3,5-Trimethylbenzene<2.5		Pace Analytica	al Services -	Melville					
1,3,5-Trimethylbenzene <2.5	1,2,4-Trimethylbenzene	<2.5	ug/kg	2.5	1	07/19/22 08:59	07/19/22 18:01	95-63-6	
Benzene <2.5	1.3.5-Trimethylbenzene	<2.5	ua/ka	2.5	1	07/19/22 08:59	07/19/22 18:01	108-67-8	
Ethylbenzene <2.5	Benzene	<2.5	ua/ka	2.5	1	07/19/22 08:59	07/19/22 18:01	71-43-2	
Line Line Line 1 OT/19/22 08:59 OT/19/22 18:01 198-82-8 Methyl-tert-butyl ether <2.5	Ethylbenzene	<2.5	ua/ka	2.5	1	07/19/22 08:59	07/19/22 18:01	100-41-4	
Methyl-tert-butyl ether <2.5	Isopropylbenzene (Cumene)	<2.5	ua/ka	2.5	1	07/19/22 08:59	07/19/22 18:01	98-82-8	
Naphthalene 42.5 ug/kg 2.5 1 07/19/22 08.59 07/19/22 18:01 108-18 Naphthalene 42.5 ug/kg 2.5 1 07/19/22 08:59 07/19/22 18:01 108-88-3 Yolene 44.9 ug/kg 4.9 1 07/19/22 08:59 07/19/22 18:01 1330-20-7 n-Butylbenzene 42.5 ug/kg 2.5 1 07/19/22 08:59 07/19/22 18:01 104-51-8 n-Propylbenzene 42.5 ug/kg 2.5 1 07/19/22 08:59 07/19/22 18:01 104-51-8 p-lsopropyltoluene 42.5 ug/kg 2.5 1 07/19/22 08:59 07/19/22 18:01 103-65-1 p-lsopropyltoluene 42.5 ug/kg 2.5 1 07/19/22 08:59 07/19/22 18:01 103-65-1 sec-Butylbenzene 42.5 ug/kg 2.5 1 07/19/22 08:59 07/19/22 18:01 135-98-8 sec-Butylbenzene 42.5 ug/kg 2.5 1	Methyl-tert-butyl ether	<2.5	ua/ka	2.5	1	07/19/22 08:59	07/19/22 18:01	1634-04-4	
Toluene <2.5	Naphthalene	<2.5	ug/kg	2.5	1	07/19/22 08:59	07/19/22 18:01	91-20-3	
Xylene (Total) <	Toluene	<2.5	ug/kg	2.5	1	07/19/22 08:59	07/19/22 18:01	108-88-3	
Ayiche (10tal) 4.5 ug/kg 4.5 1 07/19/22 00.55 07/19/22 10.50 104-51-8 n-Propylbenzene <2.5	Xylene (Total)	<4.9	ug/kg	4.9	1	07/10/22 08:50	07/10/22 18:01	1330-20-7	
n-Propylbenzene <2.5	n-Butylbenzene	~2 5	ug/kg	4.5 2.5	1	07/19/22 00:09	07/19/22 18:01	104-51-8	
y-lsopropyltoluene <2.5	n-Propylbenzene	~2.5	ug/kg	2.5	1	07/19/22 00.09	07/19/22 18:01	103-65-1	
sec-Butylbenzene <2.5 ug/kg 2.5 1 07/19/22 08.59 07/19/22 18.01 135-98-8 sec-Butylbenzene <2.5 ug/kg 2.5 1 07/19/22 08.59 07/19/22 18.01 135-98-8 sec-Butylbenzene <2.5 ug/kg 2.5 1 07/19/22 08.59 07/19/22 18:01 98-06-6 Surrogates <th<< td=""><td></td><td>~2.5</td><td>ug/kg</td><td>2.0</td><td>1</td><td>07/10/22 00.09</td><td>07/10/22 10.01</td><td>00-87-6</td><td></td></th<<>		~2.5	ug/kg	2.0	1	07/10/22 00.09	07/10/22 10.01	00-87-6	
Sec-Datylocitizene <2.5 ug/kg 2.5 1 07/19/22 06.59 07/19/22 18:01 155:98-8 tert-Butylbenzene <2.5		<2.3	ug/kg	2.0	1	07/10/22 00:59	07/10/22 10:01	125 09 9	
Construction <	tort Butylbonzono	<2.J	ug/kg	2.0	1	07/10/22 00.39	07/10/22 10:01	100-90-0	
	Surrogates	<2.3	uy/ky	2.5	I	01/19/22 00.39	01/19/22 10.01	30-00-0	
	Toluene-d8 (S)	106	%	86-154	1	07/19/22 08:59	07/19/22 18:01	2037-26-5	

Project: HER1505.P2 BAILEYS GARAGE 7/13

Pace Project No.: 70222268

Sample: SB-5 (2-5)	Lab ID: 7022	22268004	Collected: 07/13/2	2 13:0	0 Received: 07	/15/22 11:05 N	latrix: Solid	
Results reported on a "dry weight" k	basis and are adj	usted for p	ercent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV 5035A-L Low Level	Analytical Meth	iod: EPA 82	60C Preparation Me	ethod: E	EPA 5035A-L			
	Pace Analytical	Services -	Melville					
Surrogates								
4-Bromofluorobenzene (S)	93	%	75-144	1	07/19/22 08:59	07/19/22 18:01	460-00-4	
1,2-Dichloroethane-d4 (S)	94	%	82-112	1	07/19/22 08:59	07/19/22 18:01	17060-07-0	
Percent Moisture	Analytical Meth	od: ASTM I	D2216-05M					
	Pace Analytical	Services -	Melville					
Percent Moisture	2.8	%	0.10	1		07/22/22 12:00		

Project: HER1505.P2 BAILEYS GARAGE 7/13

Pace Project No.: 70222268

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions: Prepared Mathoms: Analysical Method: EPA 60100 Prepared Mathoms:	Sample: SB-6 (8-10)	Lab ID: 702	22268005	Collected: 07/13/2	22 13:4	0 Received: 07	/15/22 11:05 N	latrix: Solid	
Parameters Results Units Report Linit DF Prepared Analyzed CAS No. Qual 6010 MET ICP Analytical Method: EPA 6010C Preparation Method: EPA 3030B Pace Analytical Method: EPA 62700 Preparation Method: EPA 39454 7439-92-1 8270 MSSV PAH Analytical Method: EPA 62700 Prepared 875.33-9 Acanapithylene <73.7 ug/kg 73.7 1 0720/22 10-45 0721/22 21.37 83-3.9 Acanapithylene <73.7 ug/kg 73.7 1 0720/22 10-45 0721/22 21.37 208-96-8 Anthracene <73.7 ug/kg 73.7 1 0720/22 10-45 0721/22 21.37 208-96-8 Benzo(s)(ntrenthere <73.7 ug/kg 73.7 1 0720/22 10-45 0721/22 21.37 208-96-8 Benzo(s)(ntrenthere <73.7 ug/kg 73.7 1 0720/22 10-45 0721/22 21.37 208-92-8 Benzo(s)(ntrenthere <73.7 ug/kg 73.7 1 07	Results reported on a "dry weight"	basis and are adj	usted for p	ercent moisture, sa	ample s	size and any dilut	tions.		
Both MET ICP Analytical Method: EPA 6010C Preparation Method: EPA 3050B Dece Analytical Services - Metville 71/19/22 08:50 07/19/22 10:37 7439-92:1 Bazzo MSSY PAH Analytical Method: EPA 8270D Preparation Method: EPA 8270 Proparation Method: EPA 8000 Proparation Method: EPA 8000 Acenaphthylene <73.7	Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Pace Analytical Services - Melville Lead 14.0 mg/kg 0.27 1 07/18/22 0.80 7/19/22 10.37 7/19/22 10.37 7/19/22 10.37 7/19/22 10.37 7/19/22 10.37 7/19/22 10.37 8/32.9 Acanaphthone <37.7	6010 MET ICP	Analytical Meth	nod: EPA 60	10C Preparation M	ethod: E	EPA 3050B			
Lead 1.0. mg/kg 0.27 1. 0.701/22 10.30 7439-92-1 8270 MSSV PAH Analytical Method:: EPA 82700 Preparation Method:: EPA 82700 Verparation Method::		Pace Analytica	I Services -	Melville					
Barton Markan Services - Melvie EPR a 3s45A Concentification Melvice Evrices - Melvie 80.72022 10.45 07/2122 21.37 80.32.9 Acenaphtifulere <73.7	Lead	14.0	mg/kg	0.27	1	07/18/22 08:50	07/19/22 10:34	7439-92-1	
Dece Analytical Services - Metville Acenaphthylene <73.7	8270 MSSV PAH	Analytical Met	nod: EPA 82	70D Preparation M	ethod: E	EPA 3545A			
Acenaphthylene <73.7		Pace Analytica	I Services -	Melville					
Acenaphthylene <73.7	Acenaphthene	<73.7	ug/kg	73.7	1	07/20/22 10:45	07/21/22 21:37	83-32-9	
Anthracené <73.7	Acenaphthylene	<73.7	ug/kg	73.7	1	07/20/22 10:45	07/21/22 21:37	208-96-8	
Benzo(a)anthracene <73.7	Anthracene	<73.7	ug/kg	73.7	1	07/20/22 10:45	07/21/22 21:37	120-12-7	
Banzo(a)pyrene <73.7 ug/kg 73.7 1 07/20/22 10.45 07/21/22 21.37 50.32-8 Benzo(b)/luoranthene <73.7	Benzo(a)anthracene	<73.7	ug/kg	73.7	1	07/20/22 10:45	07/21/22 21:37	56-55-3	
Benzo(b)fuoranthene <73.7 ug/kg 73.7 1 07/20/22 10.45 07/21/22 21:37 206-99-2 Benzo(k)fuoranthene <73.7	Benzo(a)pyrene	<73.7	ug/kg	73.7	1	07/20/22 10:45	07/21/22 21:37	50-32-8	
Benzo(g,h,i)perylene <73.7 ug/kg 73.7 1 07/20/22 10:45 07/21/22 21:37 191-24-2 Benzo(k)llucranthene <73.7	Benzo(b)fluoranthene	<73.7	ug/kg	73.7	1	07/20/22 10:45	07/21/22 21:37	205-99-2	
Benzo(l)(luoranthene <73.7 ug/kg 73.7 1 07/20/22 10:45 07/21/22 21:37 207-08-9 Chrysene <73.7	Benzo(g,h,i)perylene	<73.7	ug/kg	73.7	1	07/20/22 10:45	07/21/22 21:37	191-24-2	
Chrysene <73.7	Benzo(k)fluoranthene	<73.7	ug/kg	73.7	1	07/20/22 10:45	07/21/22 21:37	207-08-9	
Dibenz(a,h)anthracene <73.7	Chrysene	<73.7	ug/kg	73.7	1	07/20/22 10:45	07/21/22 21:37	218-01-9	
Fluoranthene <73.7	Dibenz(a.h)anthracene	<73.7	ua/ka	73.7	1	07/20/22 10:45	07/21/22 21:37	53-70-3	
Fluorene <73.7 ug/kg 73.7 1 07/20/22 07/21/22 21:37 86-73-7 Indeno(1,2,3-cd)pyrene <73.7	Fluoranthene	<73.7	ug/kg	73.7	1	07/20/22 10:45	07/21/22 21:37	206-44-0	
$\begin{tabular}{l lllllllllllllllllllllllllllllllllll$	Fluorene	<73.7	ug/kg	73.7	1	07/20/22 10:45	07/21/22 21:37	86-73-7	
2-Methylaphthalene <73.7	Indeno(1.2.3-cd)pyrene	<73.7	ua/ka	73.7	1	07/20/22 10:45	07/21/22 21:37	193-39-5	
Naphthalene <73.7 ug/kg 73.7 1 07/20/22 10:45 07/21/22 21:37 91-20-3 Phenanthrene <73.7	2-Methylnaphthalene	<73.7	ua/ka	73.7	1	07/20/22 10:45	07/21/22 21:37	91-57-6	
Phenanthrene <73.7 ug/kg 73.7 1 07/20/22 10:45 07/21/22 21:37 85-01-8 Pyrene <73.7	Naphthalene	<73.7	ua/ka	73.7	1	07/20/22 10:45	07/21/22 21:37	91-20-3	
Pyrene <73.7 ug/kg 73.7 1 07/20/22 10:45 07/21/22 21:37 129-00-0 Surrogates 1.2-Dichlorobenzene-44 (S) 22 % 14-79 1 07/20/22 10:45 07/21/22 21:37 2199-69-1 2-Fluorobiphenyl (S) 38 % 35-92 1 07/20/22 10:45 07/21/22 21:37 321-60-8 Nitrobenzene-d5 (S) 33 % 30-84 1 07/20/22 10:45 07/21/22 21:37 1465-60-0 p-Terphenyl-d14 (S) 59 % 46-107 1 07/20/22 10:45 07/19/22 18:21 1465-60-0 8260C MSV 5035A-L Low Level Analytical Method: EPA 8260C Preparation Method: EPA 5035A-L Pace Analytical Services - Melville 1 97/19/22 08:59 07/19/22 18:21 95-63-6 1.3,5 -Trimethylbenzene <2.7	Phenanthrene	<73.7	ug/kg	73.7	1	07/20/22 10:45	07/21/22 21:37	85-01-8	
Surrogates 1,2-Dichlorobenzene-d4 (S) 22 % 14-79 1 07/20/22 10:45 07/21/22 21:37 2199-69-1 2-Fluorobiphenyl (S) 38 % 35-92 1 07/20/22 10:45 07/21/22 21:37 321-60-8 Nitrobenzene-d5 (S) 33 % 30-84 1 07/20/22 10:45 07/21/22 21:37 4165-60-0 p-Terphenyl-d14 (S) 59 % 46-107 1 07/20/22 10:45 07/21/22 21:37 1718-51-0 8260C MSV 5035A-L Low Level Analytical Method: EPA 8260C Preparation Method: EPA 5035A-L Pace Analytical Services - Melville 1 07/19/22 08:59 07/19/22 18:21 95-63-6 1,3,5-Timethylbenzene <2.7	Pyrene	<73.7	ug/kg	73.7	1	07/20/22 10:45	07/21/22 21:37	129-00-0	
1,2-Dichlorobenzene-d4 (S) 22 % 14-79 1 07/20/22 10:45 07/21/22 21:37 2199-69-1 2-Fluorobiphenyl (S) 38 % 35-92 1 07/20/22 10:45 07/21/22 21:37 321-60-8 Nitrobenzene-d5 (S) 33 % 30-84 1 07/20/22 10:45 07/21/22 21:37 4165-60-0 p-Terphenyl-d14 (S) 59 % 46-107 1 07/20/22 10:45 07/21/22 21:37 1718-51-0 8260C MSV 5035A-L Low Level Analytical Method: EPA 8260C Preparation Method: EPA 5035A-L Pace Analytical Services - Melville 95-63-6 1,3,5-Trimethylbenzene <2.7	Surrogates		0 0						
2-Fluorobiphenyl (S) 38 % 35-92 1 07/20/22 10:45 07/21/22 21:37 321-60-8 Nitrobenzene-d5 (S) 33 % 30-84 1 07/20/22 10:45 07/21/22 21:37 4165-60-0 p-Terphenyl-d14 (S) 59 % 46-107 1 07/20/22 10:45 07/21/22 21:37 1718-51-0 8260C MSV 5035A-L Low Level Analytical Method: EPA 8260C Preparation Method: EPA 5035A-L Pace Analytical Services - Melville 95-63-6 1,3,5-Trimethylbenzene <2.7	1,2-Dichlorobenzene-d4 (S)	22	%	14-79	1	07/20/22 10:45	07/21/22 21:37	2199-69-1	
Nitrobenzene-d5 (S) 33 % 30-84 1 07/20/22 10:45 07/21/22 21:37 4165-60-0 p-Terphenyl-d14 (S) 59 % 46-107 1 07/20/22 10:45 07/21/22 21:37 4165-60-0 8260C MSV 5035A-L Low Level Analytical Method: EPA 8260C Preparation Method: EPA 5035A-L Vision 9-563-6 1,2,4-Trimethylbenzene <2.7 ug/kg 2.7 1 07/19/22 08:59 07/19/22 18:21 95-63-6 1,3,5-Trimethylbenzene <2.7 ug/kg 2.7 1 07/19/22 08:59 07/19/22 18:21 10-67-8 Benzene <2.7 ug/kg 2.7 1 07/19/22 08:59 07/19/22 18:21 10-41-4 Isopropylbenzene (Cumene) <2.7 ug/kg 2.7 1 07/19/22 08:59 07/19/22 18:21 10-41-4 Naphthalene <2.7 ug/kg 2.7 1 07/19/22 08:59 07/19/22 18:21 10-43-04-4 Naphthalene <2.7 ug/kg 2.7 1 07/19/22 08:59 07/19/22 18:21 103-02-7 Nethyl-tert-butyl ether <2.7 ug/kg 2.7 1 07/1	2-Fluorobiphenyl (S)	38	%	35-92	1	07/20/22 10:45	07/21/22 21:37	321-60-8	
p-Terphenyl-d14 (S) 59 % 46-107 1 07/20/22 10:45 07/21/22 21:37 1718-51-0 8260C MSV 5035A-L Low Level Analytical Method: EPA 8260C Preparation Method: EPA 5035A-L EPA 5035A-L Pace Analytical Services - Melville Pace Analytical Services - Melville 07/19/22 08:59 07/19/22 18:21 95-63-6 1,3,5-Trimethylbenzene <2.7 ug/kg 2.7 1 07/19/22 08:59 07/19/22 18:21 95-63-6 Benzene <2.7 ug/kg 2.7 1 07/19/22 08:59 07/19/22 18:21 108-67-8 Benzene <2.7 ug/kg 2.7 1 07/19/22 08:59 07/19/22 18:21 10-41-4 Isopropylbenzene (Cumene) <2.7 ug/kg 2.7 1 07/19/22 08:59 07/19/22 18:21 10-41-4 Isopropylbenzene (Cumene) <2.7 ug/kg 2.7 1 07/19/22 08:59 07/19/22 18:21 10-41-4 Isopropylbenzene (Cumene) <2.7 ug/kg 2.7 1 07/19/22 08:59 07/19/22 18:21 10-41-4 Isopropylbenzene (Cumene) <2.7 ug/kg 2.7 1 07/19/22 08:59 <td>Nitrobenzene-d5 (S)</td> <td>33</td> <td>%</td> <td>30-84</td> <td>1</td> <td>07/20/22 10:45</td> <td>07/21/22 21:37</td> <td>4165-60-0</td> <td></td>	Nitrobenzene-d5 (S)	33	%	30-84	1	07/20/22 10:45	07/21/22 21:37	4165-60-0	
Analytical Method: EPA 8260C Preparation Method: EPA 5035A-L Pace Analytical Services - Melville 1,2,4-Trimethylbenzene <2.7	p-Terphenyl-d14 (S)	59	%	46-107	1	07/20/22 10:45	07/21/22 21:37	1718-51-0	
Pace Analytical Services - Melville 1,2,4-Trimethylbenzene <2.7	8260C MSV 5035A-L Low Level	Analytical Mether	nod: EPA 82	60C Preparation M	ethod: E	EPA 5035A-L			
1,2,4-Trimethylbenzene <2.7		Pace Analytica	I Services -	Melville					
1,3,5-Trimethylbenzene<2.7ug/kg2.7107/19/22 08:5907/19/22 18:21108-67-8Benzene<2.7	1,2,4-Trimethylbenzene	<2.7	ug/kg	2.7	1	07/19/22 08:59	07/19/22 18:21	95-63-6	
Benzene<2.7ug/kg2.7107/19/22 08:5907/19/22 18:2171-43-2Ethylbenzene<2.7	1,3,5-Trimethylbenzene	<2.7	ug/kg	2.7	1	07/19/22 08:59	07/19/22 18:21	108-67-8	
Ethylbenzene<2.7ug/kg2.7107/19/22 08:5907/19/22 18:21100-41-4Isopropylbenzene (Cumene)<2.7	Benzene	<2.7	ug/kg	2.7	1	07/19/22 08:59	07/19/22 18:21	71-43-2	
Soropylbenzene (Cumene)<2.7ug/kg2.7107/19/22 08:5907/19/22 18:2198-82-8Methyl-tert-butyl ether<2.7	Ethylbenzene	<2.7	ug/kg	2.7	1	07/19/22 08:59	07/19/22 18:21	100-41-4	
Methyl-tert-butyl ether <2.7 ug/kg 2.7 1 07/19/22 08:59 07/19/22 18:21 1634-04-4 Naphthalene <2.7	Isopropylbenzene (Cumene)	<2.7	ug/kg	2.7	1	07/19/22 08:59	07/19/22 18:21	98-82-8	
Naphthalene <2.7 ug/kg 2.7 1 07/19/22 08:59 07/19/22 18:21 91-20-3 Toluene <2.7 ug/kg 2.7 1 07/19/22 08:59 07/19/22 18:21 108-88-3 Xylene (Total) <5.3 ug/kg 5.3 1 07/19/22 08:59 07/19/22 18:21 103-20-7 n-Butylbenzene <2.7 ug/kg 2.7 1 07/19/22 08:59 07/19/22 18:21 103-20-7 n-Propylbenzene <2.7 ug/kg 2.7 1 07/19/22 08:59 07/19/22 18:21 104-51-8 p-Isopropylboluene <2.7 ug/kg 2.7 1 07/19/22 08:59 07/19/22 18:21 103-65-1 sec-Butylbenzene <2.7 ug/kg 2.7 1 07/19/22 08:59 07/19/22 18:21 99-87-6 sec-Butylbenzene <2.7 ug/kg 2.7 1 07/19/22 08:59 07/19/22 18:21 135-98-8 tert-Butylbenzene <2.7 ug/kg 2.7 1 07/19/22 08:59 07/19/22 18:21 98-06-6 Surrogates 103 % 86-154 1 07/19/22 08:59	Methyl-tert-butyl ether	<2.7	ua/ka	2.7	1	07/19/22 08:59	07/19/22 18:21	1634-04-4	
Toluene <2.7 ug/kg 2.7 1 07/19/22 08:59 07/19/22 18:21 108-88-3 Xylene (Total) <5.3	Naphthalene	<2.7	ua/ka	2.7	1	07/19/22 08:59	07/19/22 18:21	91-20-3	
Xylene (Total) <5.3 ug/kg 5.3 1 07/19/22 08:59 07/19/22 18:21 1330-20-7 n-Butylbenzene <2.7 ug/kg 2.7 1 07/19/22 08:59 07/19/22 18:21 104-51-8 n-Propylbenzene <2.7 ug/kg 2.7 1 07/19/22 08:59 07/19/22 18:21 103-65-1 p-Isopropyltoluene <2.7 ug/kg 2.7 1 07/19/22 08:59 07/19/22 18:21 99-87-6 sec-Butylbenzene <2.7 ug/kg 2.7 1 07/19/22 08:59 07/19/22 18:21 99-87-6 sec-Butylbenzene <2.7 ug/kg 2.7 1 07/19/22 08:59 07/19/22 18:21 135-98-8 tert-Butylbenzene <2.7 ug/kg 2.7 1 07/19/22 08:59 07/19/22 18:21 98-06-6 Surrogates Toluene-d8 (S) 103 % 86-154 1 07/19/22 08:59 07/19/22 18:21 2037-26-5	Toluene	<2.7	ua/ka	2.7	1	07/19/22 08:59	07/19/22 18:21	108-88-3	
visit visit <th< td=""><td>Xvlene (Total)</td><td><5.3</td><td>ua/ka</td><td>5.3</td><td>1</td><td>07/19/22 08:59</td><td>07/19/22 18:21</td><td>1330-20-7</td><td></td></th<>	Xvlene (Total)	<5.3	ua/ka	5.3	1	07/19/22 08:59	07/19/22 18:21	1330-20-7	
n-Propylbenzene <2.7 ug/kg 2.7 1 07/19/22 08:59 07/19/22 18:21 103-65-1 p-Isopropyltoluene <2.7 ug/kg 2.7 1 07/19/22 08:59 07/19/22 18:21 103-65-1 sec-Butylbenzene <2.7 ug/kg 2.7 1 07/19/22 08:59 07/19/22 18:21 99-87-6 sec-Butylbenzene <2.7 ug/kg 2.7 1 07/19/22 08:59 07/19/22 18:21 135-98-8 tert-Butylbenzene <2.7 ug/kg 2.7 1 07/19/22 08:59 07/19/22 18:21 98-06-6 Surrogates 86-154 1 07/19/22 08:59 07/19/22 18:21 2037-26-5	n-Butylbenzene	<2.7	ua/ka	2.7	1	07/19/22 08:59	07/19/22 18:21	104-51-8	
-Isopropyltoluene <2.7	n-Propylbenzene	<2.7	ua/ka	2.7	1	07/19/22 08:59	07/19/22 18:21	103-65-1	
sec-Butylbenzene <2.7	p-lsopropyltoluene	<2.7	ua/ka	2.7	1	07/19/22 08:59	07/19/22 18:21	99-87-6	
tert-Butylbenzene <2.7	sec-Butvlbenzene	<2.7	ua/ka	2.7	1	07/19/22 08:59	07/19/22 18:21	135-98-8	
Surrogates 103 % 86-154 1 07/19/22 08:59 07/19/22 18:21 2037-26-5	tert-Butylbenzene	<2.7	ua/ka	27	1	07/19/22 08:59	07/19/22 18:21	98-06-6	
Toluene-d8 (S) 103 % 86-154 1 07/19/22 08:59 07/19/22 18:21 2037-26-5	Surrogates		- 3' ' 9		·				
	Toluene-d8 (S)	103	%	86-154	1	07/19/22 08:59	07/19/22 18:21	2037-26-5	

Project: HER1505.P2 BAILEYS GARAGE 7/13

Pace Project No.: 70222268

Sample: SB-6 (8-10)	Lab ID: 7022	2268005	Collected: 07/13/2	2 13:40	Received: 07	/15/22 11:05 N	latrix: Solid		
Results reported on a "dry weight"	basis and are adji	usted for p	ercent moisture, sa	mple s	ize and any dilut	tions.			
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
8260C MSV 5035A-L Low Level	Analytical Meth	od: EPA 82	260C Preparation Me	ethod: E	PA 5035A-L				
	Pace Analytical	Services -	Melville						
Surrogates									
4-Bromofluorobenzene (S)	100	%	75-144	1	07/19/22 08:59	07/19/22 18:21	460-00-4		
1,2-Dichloroethane-d4 (S)	92	%	82-112	1	07/19/22 08:59	07/19/22 18:21	17060-07-0		
Percent Moisture	Analytical Method: ASTM D2216-05M								
	Pace Analytical	Services -	Melville						
Percent Moisture	12.1	%	0.10	1		07/22/22 12:01			

Project: HER1505.P2 BAILEYS GARAGE 7/13

Sample: GW-1	Lab ID:	70222268006	Collected:	07/13/2	22 10:30	Received: 07	7/15/22 11:05 N	Atrix: Water	
Parameters	Results	Units	Report	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV PAH	Analytical	Method: EPA 82	270D Prepara	ation Me	ethod: El	PA 3510C			_
	Pace Anal	ytical Services -	Melville						
Acenaphthene	<5.	2 ug/L		5.2	1	07/19/22 19:21	07/20/22 22:07	83-32-9	
Acenaphthylene	<5.	2 ug/L		5.2	1	07/19/22 19:21	07/20/22 22:07	208-96-8	
Anthracene	<5.	2 ug/L		5.2	1	07/19/22 19:21	07/20/22 22:07	120-12-7	
Benzo(a)anthracene	<5.	2 ug/L		5.2	1	07/19/22 19:21	07/20/22 22:07	56-55-3	
Benzo(a)pyrene	<5.	2 ug/L		5.2	1	07/19/22 19:21	07/20/22 22:07	50-32-8	
Benzo(b)fluoranthene	<5.	2 ug/L		5.2	1	07/19/22 19:21	07/20/22 22:07	205-99-2	
Benzo(g,h,i)perylene	<5.	2 ug/L		5.2	1	07/19/22 19:21	07/20/22 22:07	191-24-2	
Benzo(k)fluoranthene	<5.	2 ug/L		5.2	1	07/19/22 19:21	07/20/22 22:07	207-08-9	
Chrysene	<5.	2 ug/L		5.2	1	07/19/22 19:21	07/20/22 22:07	218-01-9	
Dibenz(a,h)anthracene	<5.	2 ug/L		5.2	1	07/19/22 19:21	07/20/22 22:07	53-70-3	
Fluoranthene	<5.	2 ug/L		5.2	1	07/19/22 19:21	07/20/22 22:07	206-44-0	
Fluorene	<5.	2 ug/L		5.2	1	07/19/22 19:21	07/20/22 22:07	86-73-7	
Indeno(1,2,3-cd)pyrene	<5.	2 ug/L		5.2	1	07/19/22 19:21	07/20/22 22:07	193-39-5	
2-Methylnaphthalene	<5.	2 ua/L		5.2	1	07/19/22 19:21	07/20/22 22:07	91-57-6	
Naphthalene	<5.	2 ug/L		5.2	1	07/19/22 19:21	07/20/22 22:07	91-20-3	
Phenanthrene	<5.	2 ug/L		5.2	1	07/19/22 19:21	07/20/22 22:07	85-01-8	
Pyrene	<5.	2 ug/L		5.2	1	07/19/22 19:21	07/20/22 22:07	129-00-0	
Surrogates				•	-				
1,2-Dichlorobenzene-d4 (S)	5	9 %		14-101	1	07/19/22 19:21	07/20/22 22:07	2199-69-1	
2-Fluorobiphenyl (S)	7	1 %		13-100	1	07/19/22 19:21	07/20/22 22:07	321-60-8	
Nitrobenzene-d5 (S)	6	1 %	:	30-113	1	07/19/22 19:21	07/20/22 22:07	4165-60-0	
p-Terphenyl-d14 (S)	3	3 %		10-138	1	07/19/22 19:21	07/20/22 22:07	1718-51-0	
8260C Volatile Organics	Analytical	Method: EPA 82	260C/5030C						
ezere relative erganice	Pace Anal	ytical Services -	Melville						
1.1.1-Trichloroethane	<1.	0 ua/L		1.0	1		07/22/22 12:39	71-55-6	M1
1.1.2.2-Tetrachloroethane	<1.	0 ua/L		1.0	1		07/22/22 12:39	79-34-5	
1.1.2-Trichloroethane	<1.	0 ug/L		1.0	1		07/22/22 12:39	79-00-5	
1.1.2-Trichlorotrifluoroethane	<1.	0 ug/L		1.0	1		07/22/22 12:39	76-13-1	v3
1.1-Dichloroethane	<1.	0 ug/L		1.0	1		07/22/22 12:39	75-34-3	
1.1-Dichloroethene	<1.	0 ug/L		1.0	1		07/22/22 12:39	75-35-4	12.v3
1 2 4-Trichlorobenzene	<1	0 ug/L		1.0	1		07/22/22 12:39	120-82-1	,
1 2-Dibromo-3-chloropropane	<1	0 ug/L		1.0	1		07/22/22 12:39	96-12-8	
1 2-Dibromoethane (EDB)	<1	0 ug/L		1.0	1		07/22/22 12:30	106-93-4	M1
1.2-Dichlorobenzene	<1	0 ug/L		1.0	1		07/22/22 12:00	95-50-1	1011
1 2-Dichloroethane	<1. _1	0 ug/L		1.0	1		07/22/22 12.39	107-06-2	
1.2-Dichloropropage	<1. _1			1.0	1		07/22/22 12:39	78-87-5	
1 3-Dichlorobenzene	<1. _1			1.0	1		07/22/22 12.39	541 - 72-1	M1
	<1.			1.0	1		07/22/22 12.39	106-46 7	M1
	<1.	ug/∟ • ··~//		1.U	1		07/22/22 12.39	70 02 2	
Z-DULAHUHE (IVIER)	<כ.	ug/L		0.C	1		01/22/22 12:39	10-93-3	

<5.0

<5.0

4.7J

<1.0

<1.0

<1.0

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

5.0

5.0

5.0

1.0

1.0

1.0

1

1

1

1

1

1

4-Methyl-2-pentanone (MIBK)

Bromodichloromethane

2-Hexanone

Acetone

Benzene

Bromoform

IH,v3

M1

07/22/22 12:39 591-78-6

07/22/22 12:39 108-10-1

07/22/22 12:39 67-64-1

07/22/22 12:39 71-43-2

07/22/22 12:39 75-27-4

07/22/22 12:39 75-25-2

Project: HER1505.P2 BAILEYS GARAGE 7/13

Pace Project No.: 70222268

Sample: GW-1	Lab ID: 702	22268006	Collected: 07/13/2	2 10:30	Received: 07	/15/22 11:05 N	latrix: Water		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
8260C Volatile Organics	Analytical Method: EPA 8260C/5030C								
	Pace Analytica	I Services -	Melville						
Bromomethane	<1.0	ug/L	1.0	1		07/22/22 12:39	74-83-9	v3	
Carbon disulfide	1.0	ug/L	1.0	1		07/22/22 12:39	75-15-0	L2,v3	
Carbon tetrachloride	<1.0	ug/L	1.0	1		07/22/22 12:39	56-23-5		
Chlorobenzene	<1.0	ug/L	1.0	1		07/22/22 12:39	108-90-7		
Chloroethane	<1.0	ug/L	1.0	1		07/22/22 12:39	75-00-3	v3	
Chloroform	<1.0	ug/L	1.0	1		07/22/22 12:39	67-66-3	M1	
Chloromethane	<1.0	ug/L	1.0	1		07/22/22 12:39	74-87-3	v3	
Cyclohexane	<1.0	ug/L	1.0	1		07/22/22 12:39	110-82-7		
Dibromochloromethane	<1.0	ug/L	1.0	1		07/22/22 12:39	124-48-1		
Dichlorodifluoromethane	<1.0	ug/L	1.0	1		07/22/22 12:39	75-71-8		
Ethylbenzene	<1.0	ug/L	1.0	1		07/22/22 12:39	100-41-4		
Isopropylbenzene (Cumene)	<1.0	ug/L	1.0	1		07/22/22 12:39	98-82-8		
Methyl acetate	<1.0	ug/L	1.0	1		07/22/22 12:39	79-20-9		
Methyl-tert-butyl ether	<1.0	ug/L	1.0	1		07/22/22 12:39	1634-04-4		
Methylcyclohexane	<1.0	ug/L	1.0	1		07/22/22 12:39	108-87-2		
Methylene Chloride	<1.0	ug/L	1.0	1		07/22/22 12:39	75-09-2		
Styrene	<1.0	ug/L	1.0	1		07/22/22 12:39	100-42-5		
Tetrachloroethene	<1.0	ug/L	1.0	1		07/22/22 12:39	127-18-4	v3	
Toluene	<1.0	ug/L	1.0	1		07/22/22 12:39	108-88-3	M1	
Trichloroethene	<1.0	ug/L	1.0	1		07/22/22 12:39	79-01-6	M1	
Trichlorofluoromethane	<1.0	ug/L	1.0	1		07/22/22 12:39	75-69-4		
Vinyl chloride	<1.0	ug/L	1.0	1		07/22/22 12:39	75-01-4	v3	
Xylene (Total)	<3.0	ug/L	3.0	1		07/22/22 12:39	1330-20-7		
cis-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/22/22 12:39	156-59-2		
cis-1,3-Dichloropropene	<1.0	ug/L	1.0	1		07/22/22 12:39	10061-01-5		
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/22/22 12:39	156-60-5		
trans-1,3-Dichloropropene	<1.0	ug/L	1.0	1		07/22/22 12:39	10061-02-6		
Surrogates		•							
1,2-Dichloroethane-d4 (S)	104	%	81-122	1		07/22/22 12:39	17060-07-0		
4-Bromofluorobenzene (S)	104	%	79-118	1		07/22/22 12:39	460-00-4		
Toluene-d8 (S)	93	%	82-122	1		07/22/22 12:39	2037-26-5		

Project: HER1505.P2 BAILEYS GARAGE 7/13

Pace Project No.:

70222268 Sample: GW-2 Lab ID: 70222268007 Collected: 07/13/22 14:55 Received: 07/15/22 11:05 Matrix: Water

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV PAH	Analytical Meth	od: EPA 827	0D Preparation Me	ethod: E	EPA 3510C			
	Pace Analytica	I Services - N	lelville					
Acenaphthene	<5.7	ua/L	5.7	1	07/19/22 19:21	07/20/22 22:38	83-32-9	
Acenaphthylene	<5.7	ug/L	5.7	1	07/19/22 19:21	07/20/22 22:38	208-96-8	
Anthracene	<5.7	ug/L	5.7	1	07/19/22 19:21	07/20/22 22:38	120-12-7	
Benzo(a)anthracene	<5.7	ug/L	5.7	1	07/19/22 19:21	07/20/22 22:38	56-55-3	
Benzo(a)pyrene	<5.7	ug/L	5.7	1	07/19/22 19:21	07/20/22 22:38	50-32-8	
Benzo(b)fluoranthene	<5.7	ug/L	5.7	1	07/19/22 19:21	07/20/22 22:38	205-99-2	
Benzo(g,h,i)perylene	<5.7	ug/L	5.7	1	07/19/22 19:21	07/20/22 22:38	191-24-2	
Benzo(k)fluoranthene	<5.7	ug/L	5.7	1	07/19/22 19:21	07/20/22 22:38	207-08-9	
Chrysene	<5.7	ug/L	5.7	1	07/19/22 19:21	07/20/22 22:38	218-01-9	
Dibenz(a,h)anthracene	<5.7	ug/L	5.7	1	07/19/22 19:21	07/20/22 22:38	53-70-3	
Fluoranthene	<5.7	ug/L	5.7	1	07/19/22 19:21	07/20/22 22:38	206-44-0	
Fluorene	<5.7	ug/L	5.7	1	07/19/22 19:21	07/20/22 22:38	86-73-7	
Indeno(1,2,3-cd)pyrene	<5.7	ug/L	5.7	1	07/19/22 19:21	07/20/22 22:38	193-39-5	
2-Methylnaphthalene	<5.7	ug/L	5.7	1	07/19/22 19:21	07/20/22 22:38	91-57-6	
Naphthalene	<5.7	ug/L	5.7	1	07/19/22 19:21	07/20/22 22:38	91-20-3	
Phenanthrene	<5.7	ug/L	5.7	1	07/19/22 19:21	07/20/22 22:38	85-01-8	
Pyrene	<5.7	ug/L	5.7	1	07/19/22 19:21	07/20/22 22:38	129-00-0	
Surrogates								
1,2-Dichlorobenzene-d4 (S)	50	%	14-101	1	07/19/22 19:21	07/20/22 22:38	2199-69-1	
2-Fluorobiphenyl (S)	64	%	13-100	1	07/19/22 19:21	07/20/22 22:38	321-60-8	
Nitrobenzene-d5 (S)	52	%	30-113	1	07/19/22 19:21	07/20/22 22:38	4165-60-0	
p-Terphenyl-d14 (S)	51	%	10-138	1	07/19/22 19:21	07/20/22 22:38	1718-51-0	
8260C Volatile Organics	Analytical Meth	od: EPA 826	0C/5030C					
	Pace Analytica	I Services - N	lelville					
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/22/22 12:59	71-55-6	
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/22/22 12:59	79-34-5	
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		07/22/22 12:59	79-00-5	
1,1,2-Trichlorotrifluoroethane	<1.0	ug/L	1.0	1		07/22/22 12:59	76-13-1	v3
1,1-Dichloroethane	<1.0	ug/L	1.0	1		07/22/22 12:59	75-34-3	
1,1-Dichloroethene	<1.0	ug/L	1.0	1		07/22/22 12:59	75-35-4	L2,v3
1,2,4-Trichlorobenzene	<1.0	ug/L	1.0	1		07/22/22 12:59	120-82-1	
1,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		07/22/22 12:59	96-12-8	
1,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		07/22/22 12:59	106-93-4	
1,2-Dichlorobenzene	<1.0	ug/L	1.0	1		07/22/22 12:59	95-50-1	
1,2-Dichloroethane	<1.0	ug/L	1.0	1		07/22/22 12:59	107-06-2	
1,2-Dichloropropane	<1.0	ug/L	1.0	1		07/22/22 12:59	78-87-5	
1,3-Dichlorobenzene	<1.0	ug/L	1.0	1		07/22/22 12:59	541-73-1	
1,4-Dichlorobenzene	<1.0	ug/L	1.0	1		07/22/22 12:59	106-46-7	
2-Butanone (MEK)	<5.0	ug/L	5.0	1		07/22/22 12:59	78-93-3	
2-Hexanone	<5.0	ug/L	5.0	1		07/22/22 12:59	591-78-6	
4-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		07/22/22 12:59	108-10-1	
Acetone	2.7J	ug/L	5.0	1		07/22/22 12:59	67-64-1	IH,v3
Benzene	<1.0	ug/L	1.0	1		07/22/22 12:59	71-43-2	
Bromodichloromethane	1.9	ug/L	1.0	1		07/22/22 12:59	75-27-4	
Bromoform	1.2	ug/L	1.0	1		07/22/22 12:59	75-25-2	

Project: HER1505.P2 BAILEYS GARAGE 7/13

Pace Project No.: 70222268

Sample: GW-2 Lab ID: 70222268007 Collected: 07/13/22 14:55 Received: 07/15/22 11:05 Matrix: Water DF Parameters Results Units Report Limit Prepared Analyzed CAS No. Qual Analytical Method: EPA 8260C/5030C 8260C Volatile Organics Pace Analytical Services - Melville Bromomethane <1.0 ug/L 1.0 07/22/22 12:59 74-83-9 1 v3 Carbon disulfide <1.0 ug/L 1.0 L2,v3 1 07/22/22 12:59 75-15-0 Carbon tetrachloride <1.0 ug/L 1.0 07/22/22 12:59 56-23-5 1 Chlorobenzene 07/22/22 12:59 108-90-7 <1.0 ug/L 1.0 1 Chloroethane ug/L 07/22/22 12:59 75-00-3 <1.0 1.0 1 v3 Chloroform 2.5 ug/L 1.0 1 07/22/22 12:59 67-66-3 Chloromethane <1.0 ug/L 1.0 1 07/22/22 12:59 74-87-3 v3 Cyclohexane <1.0 ug/L 1.0 1 07/22/22 12:59 110-82-7 Dibromochloromethane 2.1 ug/L 1.0 07/22/22 12:59 124-48-1 D6 1 Dichlorodifluoromethane 07/22/22 12:59 75-71-8 <1.0 ug/L 1.0 1 Ethylbenzene <1.0 ug/L 1.0 07/22/22 12:59 100-41-4 1 Isopropylbenzene (Cumene) <1.0 ug/L 1.0 07/22/22 12:59 98-82-8 1 Methyl acetate <1.0 ug/L 1.0 07/22/22 12:59 79-20-9 1 Methyl-tert-butyl ether <1.0 1.0 07/22/22 12:59 1634-04-4 ug/L 1 Methylcyclohexane <1.0 ug/L 1.0 07/22/22 12:59 108-87-2 1 Methylene Chloride <1.0 ug/L 1.0 1 07/22/22 12:59 75-09-2 Styrene <1.0 ug/L 1.0 1 07/22/22 12:59 100-42-5 Tetrachloroethene <1.0 ug/L 1.0 1 07/22/22 12:59 127-18-4 v3 Toluene <1.0 ug/L 1.0 1 07/22/22 12:59 108-88-3 Trichloroethene <1.0 ug/L 1.0 07/22/22 12:59 79-01-6 1 Trichlorofluoromethane <1.0 ug/L 1.0 1 07/22/22 12:59 75-69-4 Vinyl chloride <1.0 ug/L 1.0 1 07/22/22 12:59 75-01-4 v3 Xylene (Total) <3.0 ug/L 3.0 1 07/22/22 12:59 1330-20-7 cis-1,2-Dichloroethene <1.0 ug/L 1.0 1 07/22/22 12:59 156-59-2 cis-1,3-Dichloropropene <1.0 ug/L 1.0 1 07/22/22 12:59 10061-01-5 trans-1,2-Dichloroethene 07/22/22 12:59 156-60-5 <1.0 ug/L 1.0 1 07/22/22 12:59 10061-02-6 trans-1,3-Dichloropropene <1.0 ug/L 1.0 1 Surrogates 1,2-Dichloroethane-d4 (S) 110 % 81-122 1 07/22/22 12:59 17060-07-0 4-Bromofluorobenzene (S) 101 % 79-118 07/22/22 12:59 460-00-4 1 Toluene-d8 (S) 94 % 82-122 07/22/22 12:59 2037-26-5 1

Project:	HER1505.P2 BAI	LEYS GARAGE 7/1	3					
Pace Project No.:	70222268							
QC Batch:	265299		Analysis Me	ethod:	EPA 6010C			
QC Batch Method:	EPA 3050B		Analysis De	escription:	6010 MET			
			Laboratory:		Pace Analytica	al Services - Melv	/ille	
Associated Lab Sar	nples: 70222268	3001, 70222268002,	70222268003,	70222268004	, 70222268005			
METHOD BLANK:	1340608		Matrix	c: Solid				
Associated Lab Sar	nples: 70222268	3001, 70222268002,	70222268003,	70222268004	, 70222268005			
			Blank	Reporting				
Paran	neter	Units	Result	Limit	Analyze	ed Qualifi	ers	
Lead		mg/kg	<0.24	0.	24 07/19/22 0	9:41		
LABORATORY CO	NTROL SAMPLE:	1340609						
5			Spike	LCS	LCS	% Rec		
Paran	neter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
Lead		mg/kg	98.7	88.0	89	81-115		
MATRIX SPIKE SAI	MPLE:	1340611						
			7022197500	1 Spike	MS	MS	% Rec	
Parar	neter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Lead		mg/kg		2.7 25.2	2 20.	6 7	1 75-12	5 M1
	TE 1340610							
			70221975001	Dup				
Paran	neter	Units	Result	Result	RPD	Qualifiers	\$	
Lead		mg/kg	2.7		3.1	11		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: HER1505.P2 BAILEYS GARAGE 7/13

Pace Project No.:	70222268
-------------------	----------

QC Batch:	265731	Analysis Method:	EPA 8260C
QC Batch Method:	EPA 5035A-L	Analysis Description:	8260 MSV 5035A-L Low Level
		Laboratory:	Pace Analytical Services - Melville
			700000005

Matrix: Solid

Associated Lab Samples: 70222268001, 70222268002, 70222268003, 70222268004, 70222268005

METHOD BLANK: 1342645

Associated Lab Samples: 70222268001, 70222268002, 70222268003, 70222268004, 70222268005

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,2,4-Trimethylbenzene	ug/kg	<2.0	2.0	07/19/22 10:11	
1,3,5-Trimethylbenzene	ug/kg	<2.0	2.0	07/19/22 10:11	
Benzene	ug/kg	<2.0	2.0	07/19/22 10:11	
Ethylbenzene	ug/kg	<2.0	2.0	07/19/22 10:11	
Isopropylbenzene (Cumene)	ug/kg	<2.0	2.0	07/19/22 10:11	
Methyl-tert-butyl ether	ug/kg	<2.0	2.0	07/19/22 10:11	
n-Butylbenzene	ug/kg	<2.0	2.0	07/19/22 10:11	
n-Propylbenzene	ug/kg	<2.0	2.0	07/19/22 10:11	
Naphthalene	ug/kg	<2.0	2.0	07/19/22 10:11	
p-Isopropyltoluene	ug/kg	<2.0	2.0	07/19/22 10:11	
sec-Butylbenzene	ug/kg	<2.0	2.0	07/19/22 10:11	
tert-Butylbenzene	ug/kg	<2.0	2.0	07/19/22 10:11	
Toluene	ug/kg	<2.0	2.0	07/19/22 10:11	
Xylene (Total)	ug/kg	<4.0	4.0	07/19/22 10:11	
1,2-Dichloroethane-d4 (S)	%	86	82-112	07/19/22 10:11	
4-Bromofluorobenzene (S)	%	100	75-144	07/19/22 10:11	
Toluene-d8 (S)	%	104	86-154	07/19/22 10:11	

LABORATORY CONTROL SAMPLE: 1342646

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2,4-Trimethylbenzene	ug/kg	49.8	46.9	94	75-136	
1,3,5-Trimethylbenzene	ug/kg	49.8	45.9	92	74-136	
Benzene	ug/kg	49.8	45.7	92	74-124	
Ethylbenzene	ug/kg	49.8	51.2	103	73-134	
Isopropylbenzene (Cumene)	ug/kg	49.8	48.5	97	68-122	
Methyl-tert-butyl ether	ug/kg	49.8	45.0	90	65-122	
n-Butylbenzene	ug/kg	49.8	46.2	93	70-121	
n-Propylbenzene	ug/kg	49.8	46.3	93	68-124	
Naphthalene	ug/kg	49.8	51.1	103	64-123	
p-Isopropyltoluene	ug/kg	49.8	48.1	97	68-120	
sec-Butylbenzene	ug/kg	49.8	47.9	96	68-120	
tert-Butylbenzene	ug/kg	49.8	49.6	100	67-124	
Toluene	ug/kg	49.8	47.7	96	77-129	
Xylene (Total)	ug/kg	149	155	104	72-135	
1,2-Dichloroethane-d4 (S)	%			94	82-112	
4-Bromofluorobenzene (S)	%			101	75-144	
Toluene-d8 (S)	%			100	86-154	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: HER1505.P2 BAILEYS GARAGE 7/13

Pace Project No.: 70222268

MATRIX SPIKE SAMPLE:	1342648						
		70222268005	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,2,4-Trimethylbenzene	ug/kg	<2.7	64.8	50.7	78	29-160	
1,3,5-Trimethylbenzene	ug/kg	<2.7	64.8	50.3	78	47-143	
Benzene	ug/kg	<2.7	64.8	52.8	81	61-131	
Ethylbenzene	ug/kg	<2.7	64.8	55.6	86	56-142	
Isopropylbenzene (Cumene)	ug/kg	<2.7	64.8	54.2	84	50-146	
Methyl-tert-butyl ether	ug/kg	<2.7	64.8	55.3	85	44-119	
n-Butylbenzene	ug/kg	<2.7	64.8	45.1	70	30-148	
n-Propylbenzene	ug/kg	<2.7	64.8	48.2	74	43-149	
Naphthalene	ug/kg	<2.7	64.8	51.6	80	19-134	
p-Isopropyltoluene	ug/kg	<2.7	64.8	51.3	79	40-143	
sec-Butylbenzene	ug/kg	<2.7	64.8	51.8	80	39-147	
tert-Butylbenzene	ug/kg	<2.7	64.8	56.9	88	54-138	
Toluene	ug/kg	<2.7	64.8	53.2	82	54-141	
Xylene (Total)	ug/kg	<5.3	195	169	87	51-143	
1,2-Dichloroethane-d4 (S)	%				95	82-112	
4-Bromofluorobenzene (S)	%				101	75-144	
Toluene-d8 (S)	%				101	86-154	

SAMPLE DUPLICATE: 1342647

		70222268004	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
1,2,4-Trimethylbenzene	ug/kg	<2.5	<2.2		
1,3,5-Trimethylbenzene	ug/kg	<2.5	<2.2		
Benzene	ug/kg	<2.5	<2.2		
Ethylbenzene	ug/kg	<2.5	<2.2		
Isopropylbenzene (Cumene)	ug/kg	<2.5	<2.2		
Methyl-tert-butyl ether	ug/kg	<2.5	<2.2		
n-Butylbenzene	ug/kg	<2.5	<2.2		
n-Propylbenzene	ug/kg	<2.5	<2.2		
Naphthalene	ug/kg	<2.5	<2.2		
p-Isopropyltoluene	ug/kg	<2.5	<2.2		
sec-Butylbenzene	ug/kg	<2.5	<2.2		
tert-Butylbenzene	ug/kg	<2.5	<2.2		
Toluene	ug/kg	<2.5	<2.2		
Xylene (Total)	ug/kg	<4.9	<4.4		
1,2-Dichloroethane-d4 (S)	%	94	95		
4-Bromofluorobenzene (S)	%	93	99		
Toluene-d8 (S)	%	106	105		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: HER1505.P2 BAILEYS GARAGE 7/13

Pace Project No.:	70222268
-------------------	----------

QC Batch:	
QC Batch Method:	

266107 EPA 8260C/5030C Analysis Method:

Analysis Description: Laboratory:

EPA 8260C/5030C : 8260 MSV Pace Analytical Services - Melville

Associated Lab Samples: 70222268006, 70222268007

METHOD BLANK: 134448	1	Matrix:	Water		
Associated Lab Samples:	70222268006, 70222268007				
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/L	<1.0	1.0	07/22/22 11:11	
1,1,2,2-Tetrachloroethane	ug/L	<1.0	1.0	07/22/22 11:11	
1,1,2-Trichloroethane	ug/L	<1.0	1.0	07/22/22 11:11	
1,1,2-Trichlorotrifluoroethane	ug/L	<1.0	1.0	07/22/22 11:11	v3
1,1-Dichloroethane	ug/L	<1.0	1.0	07/22/22 11:11	
1,1-Dichloroethene	ug/L	<1.0	1.0	07/22/22 11:11	v3
1,2,4-Trichlorobenzene	ug/L	<1.0	1.0	07/22/22 11:11	
1,2-Dibromo-3-chloropropane	e ug/L	<1.0	1.0	07/22/22 11:11	
1,2-Dibromoethane (EDB)	ug/L	<1.0	1.0	07/22/22 11:11	
1,2-Dichlorobenzene	ug/L	<1.0	1.0	07/22/22 11:11	
1,2-Dichloroethane	ug/L	<1.0	1.0	07/22/22 11:11	
1,2-Dichloropropane	ug/L	<1.0	1.0	07/22/22 11:11	
1.3-Dichlorobenzene	ug/L	<1.0	1.0	07/22/22 11:11	
1,4-Dichlorobenzene	ug/L	<1.0	1.0	07/22/22 11:11	
2-Butanone (MEK)	ug/L	<5.0	5.0	07/22/22 11:11	
2-Hexanone	ug/L	<5.0	5.0	07/22/22 11:11	
4-Methyl-2-pentanone (MIBK	() ug/L	<5.0	5.0	07/22/22 11:11	
Acetone	ug/L	<5.0	5.0	07/22/22 11:11	v3
Benzene	ug/L	<1.0	1.0	07/22/22 11:11	
Bromodichloromethane	ug/L	<1.0	1.0	07/22/22 11:11	
Bromoform	ug/L	<1.0	1.0	07/22/22 11:11	
Bromomethane	ug/L	<1.0	1.0	07/22/22 11:11	v3
Carbon disulfide	ug/L	<1.0	1.0	07/22/22 11:11	v3
Carbon tetrachloride	ug/L	<1.0	1.0	07/22/22 11:11	
Chlorobenzene	ug/L	<1.0	1.0	07/22/22 11:11	
Chloroethane	ug/L	<1.0	1.0	07/22/22 11:11	v3
Chloroform	ug/L	<1.0	1.0	07/22/22 11:11	
Chloromethane	ug/L	<1.0	1.0	07/22/22 11:11	v3
cis-1,2-Dichloroethene	ug/L	<1.0	1.0	07/22/22 11:11	
cis-1,3-Dichloropropene	ug/L	<1.0	1.0	07/22/22 11:11	
Cyclohexane	ug/L	<1.0	1.0	07/22/22 11:11	
Dibromochloromethane	ug/L	<1.0	1.0	07/22/22 11:11	
Dichlorodifluoromethane	ug/L	<1.0	1.0	07/22/22 11:11	
Ethylbenzene	ug/L	<1.0	1.0	07/22/22 11:11	
Isopropylbenzene (Cumene)	ug/L	<1.0	1.0	07/22/22 11:11	
Methyl acetate	ug/L	<1.0	1.0	07/22/22 11:11	
Methyl-tert-butyl ether	ug/L	<1.0	1.0	07/22/22 11:11	
Methylcyclohexane	ug/L	<1.0	1.0	07/22/22 11:11	
Methylene Chloride	ug/L	<1.0	1.0	07/22/22 11:11	
Styrene	ug/L	<1.0	1.0	07/22/22 11:11	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Matrix: Water

Project: HER1505.P2 BAILEYS GARAGE 7/13

Pace Project No.: 70222268

METHOD BLANK: 1344481

Associated Lab Samples: 70222268006, 70222268007

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Tetrachloroethene	ug/L	<1.0	1.0	07/22/22 11:11	v3
Toluene	ug/L	<1.0	1.0	07/22/22 11:11	
trans-1,2-Dichloroethene	ug/L	<1.0	1.0	07/22/22 11:11	
trans-1,3-Dichloropropene	ug/L	<1.0	1.0	07/22/22 11:11	
Trichloroethene	ug/L	<1.0	1.0	07/22/22 11:11	
Trichlorofluoromethane	ug/L	<1.0	1.0	07/22/22 11:11	
Vinyl chloride	ug/L	<1.0	1.0	07/22/22 11:11	v3
Xylene (Total)	ug/L	<3.0	3.0	07/22/22 11:11	
1,2-Dichloroethane-d4 (S)	%	101	81-122	07/22/22 11:11	
4-Bromofluorobenzene (S)	%	104	79-118	07/22/22 11:11	
Toluene-d8 (S)	%	95	82-122	07/22/22 11:11	

LABORATORY CONTROL SAMPLE: 1344482

	1011102	Spike	105	105	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/L	50	48.3	97	72-126	
1,1,2,2-Tetrachloroethane	ug/L	50	44.8	90	70-127	
1,1,2-Trichloroethane	ug/L	50	48.8	98	81-119	
1,1,2-Trichlorotrifluoroethane	ug/L	50	32.8	66	54-133	v3
1,1-Dichloroethane	ug/L	50	43.4	87	72-126	
1,1-Dichloroethene	ug/L	50	30.6	61	66-133	L2,v3
1,2,4-Trichlorobenzene	ug/L	50	54.2	108	56-141	v1
1,2-Dibromo-3-chloropropane	ug/L	50	41.4	83	47-133	
1,2-Dibromoethane (EDB)	ug/L	50	49.8	100	81-123	
1,2-Dichlorobenzene	ug/L	50	49.8	100	80-117	
1,2-Dichloroethane	ug/L	50	50.9	102	69-134	
1,2-Dichloropropane	ug/L	50	45.4	91	75-125	
1,3-Dichlorobenzene	ug/L	50	49.4	99	82-116	
1,4-Dichlorobenzene	ug/L	50	49.4	99	80-117	
2-Butanone (MEK)	ug/L	50	42.7	85	33-165	
2-Hexanone	ug/L	50	46.5	93	50-128	IH
4-Methyl-2-pentanone (MIBK)	ug/L	50	45.7	91	62-131	
Acetone	ug/L	50	44.1	88	14-156	IH,v3
Benzene	ug/L	50	46.9	94	78-117	
Bromodichloromethane	ug/L	50	50.1	100	80-123	
Bromoform	ug/L	50	50.3	101	49-138	
Bromomethane	ug/L	50	27.6	55	10-143	IH,v3
Carbon disulfide	ug/L	50	29.5	59	66-133	L2,v3
Carbon tetrachloride	ug/L	50	46.0	92	64-135	
Chlorobenzene	ug/L	50	48.3	97	79-117	
Chloroethane	ug/L	50	27.4	55	31-156	v3
Chloroform	ug/L	50	50.1	100	79-123	
Chloromethane	ug/L	50	20.3	41	39-116	v3
cis-1,2-Dichloroethene	ug/L	50	46.5	93	77-125	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: HER1505.P2 BAILEYS GARAGE 7/13

Pace Project No.: 70222268

LABORATORY CONTROL SAMPLE: 1344482

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
cis-1,3-Dichloropropene	ug/L		45.6	91	78-131	
Cyclohexane	ug/L	50	37.0	74	53-130	
Dibromochloromethane	ug/L	50	49.6	99	65-123	
Dichlorodifluoromethane	ug/L	50	23.3	47	13-149	IH
Ethylbenzene	ug/L	50	46.4	93	79-115	
Isopropylbenzene (Cumene)	ug/L	50	43.5	87	74-118	
Methyl acetate	ug/L	50	41.1	82	10-214	
Methyl-tert-butyl ether	ug/L	50	47.2	94	69-118	
Methylcyclohexane	ug/L	50	39.6	79	63-124	
Methylene Chloride	ug/L	50	43.3	87	67-123	
Styrene	ug/L	50	47.4	95	82-121	
Tetrachloroethene	ug/L	50	38.2	76	65-120	v3
Toluene	ug/L	50	48.8	98	80-114	
trans-1,2-Dichloroethene	ug/L	50	43.4	87	74-123	
trans-1,3-Dichloropropene	ug/L	50	45.0	90	73-135	
Trichloroethene	ug/L	50	47.9	96	79-115	
Trichlorofluoromethane	ug/L	50	38.5	77	51-136	
Vinyl chloride	ug/L	50	27.1	54	49-118	v3
Xylene (Total)	ug/L	150	137	92	80-118	
1,2-Dichloroethane-d4 (S)	%			102	81-122	
4-Bromofluorobenzene (S)	%			105	79-118	
Toluene-d8 (S)	%			95	82-122	

MATRIX SPIKE SAMPLE:	1344809						
		70222268006	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/L	<1.0	50	64.9	130	72-123 N	1
1,1,2,2-Tetrachloroethane	ug/L	<1.0	50	53.0	106	64-133	
1,1,2-Trichloroethane	ug/L	<1.0	50	60.0	120	78-120	
1,1,2-Trichlorotrifluoroethane	ug/L	<1.0	50	48.1	96	56-136 v	3
1,1-Dichloroethane	ug/L	<1.0	50	56.8	114	70-124	
1,1-Dichloroethene	ug/L	<1.0	50	44.6	89	61-139 v	3
1,2,4-Trichlorobenzene	ug/L	<1.0	50	59.9	120	53-138 v	1
1,2-Dibromo-3-chloropropane	ug/L	<1.0	50	44.7	89	32-137	
1,2-Dibromoethane (EDB)	ug/L	<1.0	50	62.3	125	78-121 N	1
1,2-Dichlorobenzene	ug/L	<1.0	50	58.6	117	75-120	
1,2-Dichloroethane	ug/L	<1.0	50	65.5	131	58-138	
1,2-Dichloropropane	ug/L	<1.0	50	57.3	115	74-122	
1,3-Dichlorobenzene	ug/L	<1.0	50	60.5	121	78-119 N	1
1,4-Dichlorobenzene	ug/L	<1.0	50	60.0	120	76-118 N	1
2-Butanone (MEK)	ug/L	<5.0	50	49.5	99	33-148	
2-Hexanone	ug/L	<5.0	50	51.3	103	49-124 H	1
4-Methyl-2-pentanone (MIBK)	ug/L	<5.0	50	55.2	110	60-136	
Acetone	ug/L	4.7J	50	45.6	82	35-112 H	ł,v3
Benzene	ug/L	<1.0	50	60.1	120	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: HER1505.P2 BAILEYS GARAGE 7/13

Pace Project No.: 70222268

MATRIX SPIKE SAMPLE:	1344809						
		70222268006	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Bromodichloromethane	ug/L	<1.0	50	61.8	124	74-122	M1
Bromoform	ug/L	<1.0	50	58.2	116	39-139	
Bromomethane	ug/L	<1.0	50	29.1	58	10-130	IH,v3
Carbon disulfide	ug/L	1.0	50	40.5	79	60-129	v3
Carbon tetrachloride	ug/L	<1.0	50	64.0	128	56-143	
Chlorobenzene	ug/L	<1.0	50	60.5	121	74-122	
Chloroethane	ug/L	<1.0	50	36.0	72	35-146	v3
Chloroform	ug/L	<1.0	50	65.2	130	71-129	M1
Chloromethane	ug/L	<1.0	50	27.2	54	29-112	v3
cis-1,2-Dichloroethene	ug/L	<1.0	50	59.0	118	73-129	
cis-1,3-Dichloropropene	ug/L	<1.0	50	53.7	107	67-130	
Cyclohexane	ug/L	<1.0	50	57.0	114	46-146	
Dibromochloromethane	ug/L	<1.0	50	59.5	119	55-126	
Dichlorodifluoromethane	ug/L	<1.0	50	33.9	68	10-123	IH
Ethylbenzene	ug/L	<1.0	50	60.1	120	70-126	
Isopropylbenzene (Cumene)	ug/L	<1.0	50	58.4	117	68-127	
Methyl acetate	ug/L	<1.0	50	49.7	99	10-260	
Methyl-tert-butyl ether	ug/L	<1.0	50	57.4	115	60-140	
Methylcyclohexane	ug/L	<1.0	50	61.0	122	66-135	
Methylene Chloride	ug/L	<1.0	50	55.2	110	69-117	
Styrene	ug/L	<1.0	50	57.5	115	79-123	
Tetrachloroethene	ug/L	<1.0	50	51.8	104	64-124	v3
Toluene	ug/L	<1.0	50	64.0	128	76-123	M1
trans-1,2-Dichloroethene	ug/L	<1.0	50	59.2	118	69-127	
trans-1,3-Dichloropropene	ug/L	<1.0	50	50.2	100	61-130	
Trichloroethene	ug/L	<1.0	50	65.1	130	73-125	M1
Trichlorofluoromethane	ug/L	<1.0	50	56.5	113	59-129	
Vinyl chloride	ug/L	<1.0	50	39.3	79	33-127	v3
Xylene (Total)	ug/L	<3.0	150	179	119	78-123	
1,2-Dichloroethane-d4 (S)	%				99	81-122	
4-Bromofluorobenzene (S)	%				104	79-118	
Toluene-d8 (S)	%				94	82-122	

SAMPLE DUPLICATE: 1344778

		70222268007	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
1,1,1-Trichloroethane	ug/L	<1.0	<1.0		
1,1,2,2-Tetrachloroethane	ug/L	<1.0	<1.0		
1,1,2-Trichloroethane	ug/L	<1.0	<1.0		
1,1,2-Trichlorotrifluoroethane	ug/L	<1.0	<1.0		v3
1,1-Dichloroethane	ug/L	<1.0	<1.0		
1,1-Dichloroethene	ug/L	<1.0	<1.0		v3
1,2,4-Trichlorobenzene	ug/L	<1.0	<1.0		
1,2-Dibromo-3-chloropropane	ug/L	<1.0	<1.0		
1,2-Dibromoethane (EDB)	ug/L	<1.0	<1.0		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: HER1505.P2 BAILEYS GARAGE 7/13

Pace Project No.: 70222268

SAMPLE DUPLICATE: 1344778

		70222268007	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
1,2-Dichlorobenzene	ug/L		<1.0		
1,2-Dichloroethane	ug/L	<1.0	<1.0		
1,2-Dichloropropane	ug/L	<1.0	<1.0		
1,3-Dichlorobenzene	ug/L	<1.0	<1.0		
1,4-Dichlorobenzene	ug/L	<1.0	<1.0		
2-Butanone (MEK)	ug/L	<5.0	<5.0		
2-Hexanone	ug/L	<5.0	<5.0		
4-Methyl-2-pentanone (MIBK)	ug/L	<5.0	<5.0		
Acetone	ug/L	2.7J	2.7J	١	/3
Benzene	ug/L	<1.0	<1.0		
Bromodichloromethane	ug/L	1.9	1.7	14	
Bromoform	ug/L	1.2	<1.0		
Bromomethane	ug/L	<1.0	<1.0	١	/3
Carbon disulfide	ug/L	<1.0	<1.0	١	/3
Carbon tetrachloride	ug/L	<1.0	<1.0		
Chlorobenzene	ug/L	<1.0	<1.0		
Chloroethane	ug/L	<1.0	<1.0	١	/3
Chloroform	ug/L	2.5	2.6	4	
Chloromethane	ug/L	<1.0	<1.0	١	/3
cis-1,2-Dichloroethene	ug/L	<1.0	<1.0		
cis-1,3-Dichloropropene	ug/L	<1.0	<1.0		
Cyclohexane	ug/L	<1.0	<1.0		
Dibromochloromethane	ug/L	2.1	1.6	32 [D6
Dichlorodifluoromethane	ug/L	<1.0	<1.0		
Ethylbenzene	ug/L	<1.0	<1.0		
Isopropylbenzene (Cumene)	ug/L	<1.0	<1.0		
Methyl acetate	ug/L	<1.0	<1.0		
Methyl-tert-butyl ether	ug/L	<1.0	<1.0		
Methylcyclohexane	ug/L	<1.0	<1.0		
Methylene Chloride	ug/L	<1.0	<1.0		
Styrene	ug/L	<1.0	<1.0		
Tetrachloroethene	ug/L	<1.0	<1.0	١	/3
Toluene	ug/L	<1.0	<1.0		
trans-1,2-Dichloroethene	ug/L	<1.0	<1.0		
trans-1,3-Dichloropropene	ug/L	<1.0	<1.0		
Trichloroethene	ug/L	<1.0	<1.0		
Trichlorofluoromethane	ug/L	<1.0	<1.0		
Vinyl chloride	ug/L	<1.0	<1.0	١	/3
Xylene (Total)	ug/L	<3.0	<3.0		
1,2-Dichloroethane-d4 (S)	%	110	112		
4-Bromofluorobenzene (S)	%	101	103		
Toluene-d8 (S)	%	94	93		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: HER1505.P2 BAILEYS GARAGE 7/13

Pace Project No.: 70222268

QC Batch:	265663	Analysis Method:	EPA 8270D
QC Batch Method:	EPA 3545A	Analysis Description:	8270 Solid MSSV PAH
		Laboratory:	Pace Analytical Services - Melville

Associated Lab Samples: 70222268001, 70222268003, 70222268004, 70222268005

METHOD BLANK: 1342436	i	Matrix:	Solid		
Associated Lab Samples:	70222268001, 70222268003, 7	0222268004, 70	0222268005		
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
2-Methylnaphthalene	ug/kg	<67.0	67.0	07/21/22 14:56	
Acenaphthene	ug/kg	<67.0	67.0	07/21/22 14:56	
Acenaphthylene	ug/kg	<67.0	67.0	07/21/22 14:56	
Anthracene	ug/kg	<67.0	67.0	07/21/22 14:56	
Benzo(a)anthracene	ug/kg	<67.0	67.0	07/21/22 14:56	
Benzo(a)pyrene	ug/kg	<67.0	67.0	07/21/22 14:56	
Benzo(b)fluoranthene	ug/kg	<67.0	67.0	07/21/22 14:56	
Benzo(g,h,i)perylene	ug/kg	<67.0	67.0	07/21/22 14:56	
Benzo(k)fluoranthene	ug/kg	<67.0	67.0	07/21/22 14:56	
Chrysene	ug/kg	<67.0	67.0	07/21/22 14:56	
Dibenz(a,h)anthracene	ug/kg	<67.0	67.0	07/21/22 14:56	
Fluoranthene	ug/kg	<67.0	67.0	07/21/22 14:56	
Fluorene	ug/kg	<67.0	67.0	07/21/22 14:56	
Indeno(1,2,3-cd)pyrene	ug/kg	<67.0	67.0	07/21/22 14:56	
Naphthalene	ug/kg	<67.0	67.0	07/21/22 14:56	
Phenanthrene	ug/kg	<67.0	67.0	07/21/22 14:56	
Pyrene	ug/kg	<67.0	67.0	07/21/22 14:56	
1,2-Dichlorobenzene-d4 (S)	%	41	14-79	07/21/22 14:56	
2-Fluorobiphenyl (S)	%	47	35-92	07/21/22 14:56	
Nitrobenzene-d5 (S)	%	41	30-84	07/21/22 14:56	
p-Terphenyl-d14 (S)	%	62	46-107	07/21/22 14:56	

LABORATORY CONTROL SAMPLE: 1342437

Parameter	Unite	Spike	LCS Result	LCS % Rec	% Rec	Qualifiers
I alameter	01113			70 IXEC	Linits	Quaimers
2-Methylnaphthalene	ug/kg	1670	692	42	36-96	
Acenaphthene	ug/kg	1670	751	45	33-93	
Acenaphthylene	ug/kg	1670	699	42	36-97	
Anthracene	ug/kg	1670	900	54	38-101	
Benzo(a)anthracene	ug/kg	1670	952	57	36-103	
Benzo(a)pyrene	ug/kg	1670	884	53	38-104	
Benzo(b)fluoranthene	ug/kg	1670	954	57	34-104	
Benzo(g,h,i)perylene	ug/kg	1670	1050	63	27-116	
Benzo(k)fluoranthene	ug/kg	1670	929	56	38-106	
Chrysene	ug/kg	1670	980	59	38-103	
Dibenz(a,h)anthracene	ug/kg	1670	971	58	29-114	
Fluoranthene	ug/kg	1670	923	55	38-103	
Fluorene	ug/kg	1670	780	47	33-99	
Indeno(1,2,3-cd)pyrene	ug/kg	1670	1050	63	28-110	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: HER1505.P2 BAILEYS GARAGE 7/13

Pace Project No.: 70222268

LABORATORY CONTROL SAMPLE: 1342437

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Naphthalene	ug/kg	1670	668	40	32-91	
Phenanthrene	ug/kg	1670	910	55	37-102	
Pyrene	ug/kg	1670	882	53	36-103	
1,2-Dichlorobenzene-d4 (S)	%			34	14-79	
2-Fluorobiphenyl (S)	%			39	35-92	
Nitrobenzene-d5 (S)	%			33	30-84	
p-Terphenyl-d14 (S)	%			59	46-107	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:		: 13424	1342460								
			MS	MSD							
	7022	2247001	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
2-Methylnaphthalene	ug/kg	<71.9	1800	1810	888	914	49	50	23-104	3	
Acenaphthene	ug/kg	<71.9	1800	1810	863	947	48	52	25-114	9	
Acenaphthylene	ug/kg	<71.9	1800	1810	828	913	46	50	44-98	10	
Anthracene	ug/kg	<71.9	1800	1810	885	953	49	53	20-124	7	
Benzo(a)anthracene	ug/kg	<71.9	1800	1810	868	976	48	54	18-123	12	
Benzo(a)pyrene	ug/kg	<71.9	1800	1810	801	927	45	51	14-125	15	
Benzo(b)fluoranthene	ug/kg	<71.9	1800	1810	836	981	47	54	13-131	16	
Benzo(g,h,i)perylene	ug/kg	<71.9	1800	1810	921	1080	51	60	10-130	16	
Benzo(k)fluoranthene	ug/kg	<71.9	1800	1810	827	1000	46	55	26-123	19	
Chrysene	ug/kg	<71.9	1800	1810	895	1000	50	55	18-111	11	
Dibenz(a,h)anthracene	ug/kg	<71.9	1800	1810	905	1060	50	59	21-104	16	
Fluoranthene	ug/kg	<71.9	1800	1810	836	925	47	51	12-118	10	
Fluorene	ug/kg	<71.9	1800	1810	845	964	47	53	10-117	13	
Indeno(1,2,3-cd)pyrene	ug/kg	<71.9	1800	1810	923	1090	51	60	10-111	17	
Naphthalene	ug/kg	<71.9	1800	1810	767	845	43	47	10-175	10	
Phenanthrene	ug/kg	<71.9	1800	1810	878	951	49	52	11-119	8	
Pyrene	ug/kg	<71.9	1800	1810	818	939	46	52	10-129	14	
1,2-Dichlorobenzene-d4 (S)	%						31	31	14-79		
2-Fluorobiphenyl (S)	%						43	48	35-92		
Nitrobenzene-d5 (S)	%						39	42	30-84		
p-Terphenyl-d14 (S)	%						51	61	46-107		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: HER1505.P2 BAILEYS GARAGE 7/13

Pace Project No.:	70222268
-------------------	----------

QC Batch:	26

5968 QC Batch Method: EPA 3545A

Analysis Description: 8270 Solid MSSV PAH Laboratory: Pace Analytical Services - Melville

Matrix: Solid

EPA 8270D

Analysis Method:

Associated Lab Samples: 70222268002

METHOD BLANK: 1343660

Associated Lab Samples: 70222268002

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
2-Methylnaphthalene	ug/kg	<67.0	67.0	07/26/22 19:42	
Acenaphthene	ug/kg	<67.0	67.0	07/26/22 19:42	
Acenaphthylene	ug/kg	<67.0	67.0	07/26/22 19:42	
Anthracene	ug/kg	<67.0	67.0	07/26/22 19:42	
Benzo(a)anthracene	ug/kg	<67.0	67.0	07/26/22 19:42	
Benzo(a)pyrene	ug/kg	<67.0	67.0	07/26/22 19:42	
Benzo(b)fluoranthene	ug/kg	<67.0	67.0	07/26/22 19:42	
Benzo(g,h,i)perylene	ug/kg	<67.0	67.0	07/26/22 19:42	
Benzo(k)fluoranthene	ug/kg	<67.0	67.0	07/26/22 19:42	
Chrysene	ug/kg	<67.0	67.0	07/26/22 19:42	
Dibenz(a,h)anthracene	ug/kg	<67.0	67.0	07/26/22 19:42	
Fluoranthene	ug/kg	<67.0	67.0	07/26/22 19:42	
Fluorene	ug/kg	<67.0	67.0	07/26/22 19:42	
Indeno(1,2,3-cd)pyrene	ug/kg	<67.0	67.0	07/26/22 19:42	
Naphthalene	ug/kg	<67.0	67.0	07/26/22 19:42	
Phenanthrene	ug/kg	<67.0	67.0	07/26/22 19:42	
Pyrene	ug/kg	<67.0	67.0	07/26/22 19:42	
1,2-Dichlorobenzene-d4 (S)	%	55	14-79	07/26/22 19:42	
2-Fluorobiphenyl (S)	%	66	35-92	07/26/22 19:42	
Nitrobenzene-d5 (S)	%	57	30-84	07/26/22 19:42	
p-Terphenyl-d14 (S)	%	83	46-107	07/26/22 19:42	

LABORATORY CONTROL SAMPLE: 1343661

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
2-Methylnaphthalene	ug/kg	3330	2160	65	36-96	
Acenaphthene	ug/kg	3330	2450	73	33-93	
Acenaphthylene	ug/kg	3330	2330	70	36-97	
Anthracene	ug/kg	3330	2650	80	38-101	
Benzo(a)anthracene	ug/kg	3330	2670	80	36-103	
Benzo(a)pyrene	ug/kg	3330	2520	76	38-104	
Benzo(b)fluoranthene	ug/kg	3330	2880	86	34-104	
Benzo(g,h,i)perylene	ug/kg	3330	2870	86	27-116	
Benzo(k)fluoranthene	ug/kg	3330	2610	78	38-106	
Chrysene	ug/kg	3330	2740	82	38-103	
Dibenz(a,h)anthracene	ug/kg	3330	2940	88	29-114	
Fluoranthene	ug/kg	3330	2490	75	38-103	
Fluorene	ug/kg	3330	2560	77	33-99	
Indeno(1,2,3-cd)pyrene	ug/kg	3330	3170	95	28-110	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: HER1505.P2 BAILEYS GARAGE 7/13

Pace Project No.: 70222268

LABORATORY CONTROL SAMPLE: 1343661

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Naphthalene	ug/kg	3330	2100	63	32-91	
Phenanthrene	ug/kg	3330	2680	80	37-102	
Pyrene	ug/kg	3330	2500	75	36-103	
1,2-Dichlorobenzene-d4 (S)	%			54	14-79	
2-Fluorobiphenyl (S)	%			69	35-92	
Nitrobenzene-d5 (S)	%			56	30-84	
p-Terphenyl-d14 (S)	%			86	46-107	

MATRIX SPIKE & MATRIX SPIK	E: 13446	1344600									
			MS	MSD							
	702	22684001	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
2-Methylnaphthalene	ug/kg	<74.3	1850	1860	1260	1400	68	75	23-104	11	
Acenaphthene	ug/kg	<74.3	1850	1860	1340	1440	72	77	25-114	7	
Acenaphthylene	ug/kg	<74.3	1850	1860	1250	1370	68	74	44-98	9	
Anthracene	ug/kg	<74.3	1850	1860	1350	1460	73	78	20-124	8	
Benzo(a)anthracene	ug/kg	<74.3	1850	1860	1360	1480	74	80	18-123	8	
Benzo(a)pyrene	ug/kg	<74.3	1850	1860	1270	1360	69	73	14-125	7	
Benzo(b)fluoranthene	ug/kg	<74.3	1850	1860	1370	1480	74	79	13-131	8	
Benzo(g,h,i)perylene	ug/kg	<74.3	1850	1860	1160	1260	63	68	10-130	8	
Benzo(k)fluoranthene	ug/kg	<74.3	1850	1860	1400	1560	76	84	26-123	11	
Chrysene	ug/kg	<74.3	1850	1860	1500	1500	81	81	18-111	0	
Dibenz(a,h)anthracene	ug/kg	<74.3	1850	1860	1240	1430	67	77	21-104	14	
Fluoranthene	ug/kg	<74.3	1850	1860	1290	1550	70	83	12-118	18	
Fluorene	ug/kg	<74.3	1850	1860	1330	1480	72	80	10-117	11	
Indeno(1,2,3-cd)pyrene	ug/kg	<74.3	1850	1860	1280	1420	70	76	10-111	10	
Naphthalene	ug/kg	<74.3	1850	1860	1140	1320	62	71	10-175	15	
Phenanthrene	ug/kg	<74.3	1850	1860	1360	1430	74	77	11-119	5	
Pyrene	ug/kg	<74.3	1850	1860	1300	1400	70	75	10-129	7	
1,2-Dichlorobenzene-d4 (S)	%						51	38	14-79		
2-Fluorobiphenyl (S)	%						65	67	35-92		
Nitrobenzene-d5 (S)	%						57	59	30-84		
p-Terphenyl-d14 (S)	%						78	79	46-107		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: HER1505.P2 BAILEYS GARAGE 7/13

Pace Project No.:	70222268
-------------------	----------

Fluoranthene

Naphthalene

Phenanthrene

Indeno(1,2,3-cd)pyrene

1,2-Dichlorobenzene-d4 (S)

2-Fluorobiphenyl (S)

Nitrobenzene-d5 (S)

p-Terphenyl-d14 (S)

Fluorene

Pyrene

QC Batch:	2656	622		Analysis Meth	nod: E	PA 8270D		
QC Batch Method: EPA 3510C		Analysis Des	cription: 8	270 Water MSSV PA	λH			
				Laboratory:	P	ace Analytical Servi	ces - Melville	
Associated Lab San	nples:	702222680	006, 70222268007			·		
METHOD BLANK:	13420)16		Matrix:	Water			
Associated Lab San	nples:	702222680	06, 70222268007					
				Blank	Reporting			
Paran	Parameter Units		Units	Result	Limit	Analyzed	Qualifiers	
2-Methylnaphthalen	е		ug/L	<5.0	5.0	07/20/22 17:24		
Acenaphthene			ug/L	<5.0	5.0	07/20/22 17:24		
Acenaphthylene			ug/L	<5.0	5.0	07/20/22 17:24		
Anthracene			ug/L	<5.0	5.0	07/20/22 17:24		
Benzo(a)anthracene)		ug/L	<5.0	5.0	07/20/22 17:24		
Benzo(a)pyrene			ug/L	<5.0	5.0	07/20/22 17:24		
Benzo(b)fluoranther	ne		ug/L	<5.0	5.0	07/20/22 17:24		
Benzo(g,h,i)perylene	e		ug/L	<5.0	5.0	07/20/22 17:24		
Benzo(k)fluoranther	e		ug/L	<5.0	5.0	07/20/22 17:24		
Chrysene			ug/L	<5.0	5.0	07/20/22 17:24		
Dibenz(a,h)anthrace	ene		ug/L	<5.0	5.0	07/20/22 17:24		

<5.0

<5.0

<5.0

<5.0

<5.0

<5.0

62

74

61

93

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

%

%

%

%

5.0 07/20/22 17:24

5.0 07/20/22 17:24

5.0 07/20/22 17:24

5.0 07/20/22 17:24

5.0 07/20/22 17:24

5.0 07/20/22 17:24

14-101 07/20/22 17:24

13-100 07/20/22 17:24

30-113 07/20/22 17:24

10-138 07/20/22 17:24

LABORATORY CONTROL SAMPLE & LCSD: 1342017 1342018										
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
2-Methylnaphthalene	ug/L	25	17.9	19.1	72	76	46-102	6	30	
Acenaphthene	ug/L	25	20.5	21.0	82	84	54-101	2	30	
Acenaphthylene	ug/L	25	19.2	19.9	77	79	56-105	3	30	
Anthracene	ug/L	25	21.9	22.2	87	89	61-108	2	30	
Benzo(a)anthracene	ug/L	25	22.3	22.7	89	91	62-109	2	30	
Benzo(a)pyrene	ug/L	25	21.1	20.6	84	82	62-117	2	30	
Benzo(b)fluoranthene	ug/L	25	24.2	24.6	97	98	60-111	2	30	
Benzo(g,h,i)perylene	ug/L	25	25.3	24.9	101	100	58-123	1	30	
Benzo(k)fluoranthene	ug/L	25	23.6	22.6	95	90	63-111	5	30	
Chrysene	ug/L	25	23.7	23.6	95	94	61-109	1	30	
Dibenz(a,h)anthracene	ug/L	25	24.3	25.0	97	100	62-121	3	30	
Fluoranthene	ug/L	25	21.3	21.7	85	87	61-112	2	30	
Fluorene	ug/L	25	20.7	21.0	83	84	57-106	2	30	
Indeno(1,2,3-cd)pyrene	ug/L	25	25.3	25.3	101	101	59-116	0	30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: HER1505.P2 BAILEYS GARAGE 7/13

Pace Project No.: 70222268

LABORATORY CONTROL SAMPLE & LCSD: 1342017 1342018										
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Naphthalene	ug/L	25	16.3	18.4	65	73	46-99	12	30	
Phenanthrene	ug/L	25	21.9	22.2	88	89	60-109	1	30	
Pyrene	ug/L	25	21.1	21.0	84	84	59-112	0	30	
1,2-Dichlorobenzene-d4 (S)	%				48	56	14-101			
2-Fluorobiphenyl (S)	%				72	75	13-100			
Nitrobenzene-d5 (S)	%				56	62	30-113			
p-Terphenyl-d14 (S)	%				92	92	10-138			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Pace Project No.:	HER1505.P2 BAILE 70222268	EYS GARAGE 7/13					
QC Batch:	266102	Analysis Meth	od:	ASTM D2216-05			
QC Batch Method: ASTM D2216-05M			Analysis Description:		Dry Weight/Perce	ent Moisture	
			Laboratory:		Pace Analytical S	Services - Melville	
Associated Lab Sar	mples: 702222680	01, 70222268002, 7	70222268003, 70	222268004,	70222268005		
SAMPLE DUPLICA	TE: 1344460						
			70222268001	Dup			
Parameter Units		Result	Result	RPD	Qualifiers		
Percent Moisture		%	11.2	10	.8	4	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: HER1505.P2 BAILEYS GARAGE 7/13

Pace Project No.: 70222268

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

SAMPLE QUALIFIERS

Sample: 70222268001

[1] Sample not collected according to EPA Method 5035A low level specifications. Results may be biased low. Sample: 70222268002

[1] Sample not collected according to EPA Method 5035A low level specifications. Results may be biased low. Sample: 70222268003

[1] Sample not collected according to EPA Method 5035A low level specifications. Results may be biased low. Sample: 70222268004

[1] Sample not collected according to EPA Method 5035A low level specifications. Results may be biased low. Sample: 70222268005

Sample not collected according to EPA Method 5035A low level specifications. Results may be biased low.

ANALYTE QUALIFIERS

- D6 The precision between the sample and sample duplicate exceeded laboratory control limits.
- IH This analyte exceeded secondary source verification criteria high for the initial calibration. The reported results should be considered an estimated value.
- L2 Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALIFIERS

Project: HER1505.P2 BAILEYS GARAGE 7/13

Pace Project No.: 70222268

ANALYTE QUALIFIERS

- S0 Surrogate recovery outside laboratory control limits.
- S8 Surrogate recovery outside laboratory control limits due to matrix interferences (confirmed by similar results from sample re-extraction and/or re-analysis)
- v1 The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.
- v3 The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have a low bias.

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:HER1505.P2 BAILEYS GARAGE 7/13Pace Project No.:70222268

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
70222268001	SB-1 (6-8)	EPA 3050B	265299	EPA 6010C	265382
70222268002	SB-2 (8-10)	EPA 3050B	265299	EPA 6010C	265382
70222268003	SB-3 (12.5-13.5)	EPA 3050B	265299	EPA 6010C	265382
70222268004	SB-5 (2-5)	EPA 3050B	265299	EPA 6010C	265382
70222268005	SB-6 (8-10)	EPA 3050B	265299	EPA 6010C	265382
70222268001	SB-1 (6-8)	EPA 3545A	265663	EPA 8270D	265942
70222268002	SB-2 (8-10)	EPA 3545A	265968	EPA 8270D	266387
70222268003	SB-3 (12.5-13.5)	EPA 3545A	265663	EPA 8270D	265942
70222268004	SB-5 (2-5)	EPA 3545A	265663	EPA 8270D	265942
70222268005	SB-6 (8-10)	EPA 3545A	265663	EPA 8270D	265942
70222268006	GW-1	EPA 3510C	265622	EPA 8270D	265657
70222268007	GW-2	EPA 3510C	265622	EPA 8270D	265657
70222268001	SB-1 (6-8)	EPA 5035A-L	265731	EPA 8260C	265737
70222268002	SB-2 (8-10)	EPA 5035A-L	265731	EPA 8260C	265737
70222268003	SB-3 (12.5-13.5)	EPA 5035A-L	265731	EPA 8260C	265737
70222268004	SB-5 (2-5)	EPA 5035A-L	265731	EPA 8260C	265737
70222268005	SB-6 (8-10)	EPA 5035A-L	265731	EPA 8260C	265737
70222268006	GW-1	EPA 8260C/5030C	266107		
70222268007	GW-2	EPA 8260C/5030C	266107		
70222268001	SB-1 (6-8)	ASTM D2216-05M	266102		
70222268002	SB-2 (8-10)	ASTM D2216-05M	266102		
70222268003	SB-3 (12.5-13.5)	ASTM D2216-05M	266102		
70222268004	SB-5 (2-5)	ASTM D2216-05M	266102		
70222268005	SB-6 (8-10)	ASTM D2216-05M	266102		

REPORT OF LABORATORY ANALYSIS

	rage. 1 Of		And an and a second second	State / Location	AN -		(ΝΙΥ) επίτα	iri) isubiseR									E SAMPLE CONDITION	est	<u>امر</u>	uo :	Sooler Sooler (eceived EMP in C
	Γ		100		ale Elbarad (VM)							_			+		DATE TIM	11 22.11.2	Alche II. a	-	12 7073
0222268	- MOND DADAY	1 100 m 10 00	1 3/3 10.75 11 4		Dominated Arrely	N/A	s Teșt 9 (CP-51 Table 501 (CP-51 Tab 5010	(0191 1690 ph 6 2AOC? ph 85 AOC? ph 858 9 193]A28			111	11	1116	34	3131		BY I AFFILIATION	and Dace	WERI		DATE Signed: 7
DY / Anal) EGAL DOCUME Terms and Condit	WPD ASSOUTHER	lame:	I PONCIMIO 20	ci Manager:	14. 14.	Preservatives		Office Methanol HCI HCO HCO HCI						(m)	m		ACCEPTED	2	C		· Gerphile
DF-CUSTO F-Custody is a LE tance of the Pace	Invoice Info Altention:	V Company N	Address: Pace Quote	Pace Projec	Pace Profile	N	ottoelle 883	T SAMPLE TEMP # OF CONTAIN Unpreserved	60	C%	2	2	2		~		ATE TIME	7.22 1105	1422/6	SIGNATURE	WPLER: Jun
CHAIN-C The Chain-of constitutes acknowledgment and accept	oject Information: John Gorman	mark. Lunglet MIROS OCIENTS Car	der H	* HER1505 P2	Raddy Gamal	COLLECTED COLLECTED S D LEN	(George code: Start Start	MATRIX CODE SAMPLE TYPE SAMPLE TYPE SAMPLE THE THE DATE DATE	5. 6-1. 3.2 i i 50	6713. 20 UD8	NG 7.127 1200	5 6 7 13 W 13 il	0 14 a 7 18. 13 1340	Sh & 7.15.16 1030	(*)(0,13.14.HSS		RELINDUISHED BY J AFFILIATION D	alu Wan 21	Flater 7.	SAMPLER NAME AND	PRINT Name of SA SIGNATURE of SA
via this chain of custod	Reputed Pr Report To:	Copy To:	Purchase Or	Project Name	Project #:	MATRIX CODE	Danking Water DW Water WT Waste Water WW Product P Souldshad SL OA	Vinge WP Aw AR Other OT Tissue TS			(35)						1	-11 have	[soil	, in the second s	
Pace Submitting a sample	lient Information: UDD Accordance for	1 Fairchild Square	Nitton Park , NY 12065		Due Date: Standard		SAMPLE ID	One Character per box. (A.Z. 0-91, .) Sample Ids must be unique	Seul/1-81	Se. 1 1 % - 10	SB-3 (0.5-1	58-5 (0-5)	SB-6 (3-10)	(~M~)	Gw-2		ADDITIONAL COMMENTS	1 me and a fill have be	ine rain the SUD(spicate in SUD(spicituation and	as from the same tor a	

2	S	ampli	e Conditi	on Upon Recr	WO# 702	22268
Pace Analytical	Client	Name:	Issocia	Projec	PM: KMM	Due Date: 07/29/22
Courier: (Dred Ex() UPS () USPS ()Clier Tracking #: 5631 5634	u EDoma 32	nercial	Dace Dth	er	CLIENT: HRPCLIF	TON
Custody Seal on Cooler/Box Present: 🔲	les 🖬	Seals	intact: 🗆 Ye	es No En/A	Temperature Blank	Present: 🛛 Yes 🗍 No
Packing Material: Bubble Wrap Bubb	le Bags –	Ziploc	Chous CDot	ther	Type of Ice: We	Blue None
Thermometer Used: THOSE THUSE	Correc	tion Fac	tor: + O.		Samples on ice, coolin	ng process has begun
Cooler Temperature(°C): 1. 4	Cooler	Tempera	ature Correct	led(°C): 1.5	Date/Time 5035A kit	s placed in freezer
Temp should be above freezing to 6.0°C USDA Regulated Soil (□N/A, water samp	e)			Date and Initials of p	erson examining conte	nts: A.S 7/15
Did samples originate in a quarantine zone v	within the l	United Sta	ates: AL, AR, C/	n, Fl., Ga, ID, LA, MS, NC,	Did samples orignate	from a foreign source
NM, NY, OK, OR, SC, TN, TX, or VA (check map,]? □ Ye	es 🗆No			including Hawaii and I	Puerto Rico)? 🛛 Yes 🕱 No
If Yes to either question, fill out a Regula	ted Soil Cl	hecklist	(F-L1-C-010) a	and include with SCUR/	COC paperwork.	
			12.)/	+	COMMENTS:	
Chain of Custody Present:	Elves	⊡No	·	l.		
Chain of Custody Filled Out:	Yes	⊡No		2.		
Chain of Custody Relinquished:	ElYes	⊡No		3.		
Sampler Name & Signature on COC:	Pres	⊡No	ON/A	4.		
Samples Arrived within Hold Time:	eves	⊡No		5.		
Short Hold Time Analysis (<72hr):	⊡Yes	BND		6		
Rush Turn Around Time Requested:	DYes	GN O		7		+
Sufficient Volume: (Triple volume provided fo	or lowes	⊡No		8.		
Correct Containers Used:	Offes	ONo		9.		3 K
-Pace Containers Used:	•2Yes	ΠNο				
Containers Intact:	Liffes	DNO	1.	10.	1.1	
Filtered volume received for Dissolved tests	⊠Yes	DNo	DN/A	II. Note if sed	iment is visible in the dis	solved container.
Sample Labels match CUC:	⊡Yes	ONo		12.		
-Includes date/time/lu/Matrix: (SL 9//	'OIL					
All containers needing preservation have be	en OYes	⊡No	COM/A	IS. OHNU3	□ H ₂ SU ₄ □ NaOH	C HCI
nBurkeur nH nanec Lot #						-
All containers needing preservation are four	d to be			Sample #	4	
in compliance with method recommendation	1?			Compio ii		
(HNU ₃ , H ₂ SO ₄ , HCI, NaOH>9 Sulfide,	DYes	⊡No	GNA			
NAOH>12 Cyanide)						2
Exceptions: VOA, Coliform, TOC/DOC, Bil and I	Grease,					
DRO/8015 (water).			120	Initial when completed	: Lot # of added	Date/Time preservative
Per Method, VOA pH is checked after analysi	s		-		preservative;	added:
Samples checked for dechlorination:	DYes	⊡No	ON/A	14		
(I starch test strips Lot #						
Residual chlorine strips Lot #				Positive for R	es. Chlorine? Y N	
SM 4500 CN samples checked for suffide?	OYes	DNo	ONTA	15	1	
ead Acetate Strips Lot #				Positive for Si	ulfide? Y N	
leadspace in VOA Vials (>6mm)	□Yes	CILLING	⊡N/A	16.	· · · · · · · · · · · · · · · · · · ·	
rip Blank Present-	OYes	CHO	ON/A	17_		
rip Blank Custody Seals Present	DYes	ONO	GN/A			
Pace Trip Blank Lot # [if applicable]						
				Field Data Required?	Y / N	
Dlient Notification/ Resolution:						
Client Notification/ Resolution: Person Contacted:				Date/fime:		

PEM (Project Manager) review is documented electronically in LIMS

4